したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

おしえてえらいひと

1ウゴウゴ:2006/03/10(金) 14:13:50
わからないことがあったら、とりあえずきいてみようね♪

222のろうゐるす:2014/10/22(水) 14:51:30
うむ。可換のときは既に解決しておった。暇な人は非可換のときにチャレンジしてくれ。
http://www.ams.org/journals/tran/1971-159-00/S0002-9947-1971-0283575-1/

223のろうゐるす:2014/10/22(水) 15:04:42
ところで極大*部分環の場合はどうなのだろうか?

225名無しさん:2014/10/26(日) 05:49:53
>>222
えー、Conwayの A corse in functional analysisに書いてなかったっけ?

226のろうゐるす:2014/10/26(日) 09:46:03
ゑっ何ゐってんの?単位的な場合しか扱ってないと思うが。
VII.§8.Exercise 2で非単位的な場合を扱っているが、モヂュライデアルしか扱っていない。

229のろうゐるす:2014/11/05(水) 18:16:09
特に理由はないがOut(O_2)が単純かどうか知りたい(>>182)。
一般にOut(A)は既約表現のユニタリ同値類の集合 \hat{A} に作用するが、
これは忠実なのだろうか。つまり自己同型 \alpha が任意の純粋状態 \phi に
対して \phi\circ\alpha 〜_unitary \phi であれば、\alpha は内部的?

230のろうゐるす:2014/11/05(水) 18:35:55
ふむう。少なくとも A に単純性の仮定をおかないとつまらないね。

231のろうゐるす:2014/11/06(木) 06:57:45
そういや、Out(O_2) の元は位数さえあえばconjugateなんだったっけ。

232のろうゐるす:2014/11/06(木) 13:05:40
タレコミがあったよ。>>231はそんなことないそうな。さらに、
「A 上の自己同型 \alpha が任意の純粋状態 \phi に対して \phi\circ\alpha 〜_unitary \phi
であれば、\alpha は内部的」は少なくとも単純環に対して成り立つそうな。(岸本cmp81)
上の条件は拡大にも閉じているから、論文をちゃんと読めば任意のC*環についても成り立つことが
分かるのだろう。

233のろうゐるす:2014/11/08(土) 18:24:45
有限生成群 G = <S> が擬対角的であることと、
 ∀ε>0 ∃H \ell_2G の有限次元部分空間
 s.t. δ_1 \in H and max_{s∈S} ||[P_H,λ(s)]|| < ε
が同値だ。そのような H の中で dim H を最小化して d_S(ε) と置く。
ε→0 としたときの d_S(ε) の増大度は生成元 S の取り方に依らないので、
G の擬対角的エントロピーが定義できる。これはどういったもんなんじゃろ?
growth function |S^n| との関係は分からぬが、少なくともベキ零群のときは
d_S(ε) が 1/ε の多項式で抑えられるようだ。これは劣指数的増大度を持つ
群が擬対角的であることを示唆しているように見えるが、はてさて。

234さとう:2014/11/08(土) 19:29:05
なんだか新しい切り口ですね。
僕なんかでは群の増大度と擬対角に関係があるようには見えないですよ。

235Rui:2014/11/09(日) 14:54:44
Voiculescu の quasicentral approximate units の obstruction では?

236のろうゐるす:2014/12/02(火) 10:36:46
ロシアからの飛行機の上で解いた演習問題。なんかの役に立つとは思えんが、
量子情報理論でcloneable状態と呼ばれて研究されているみたいだ。
「C*環上の状態φとψは、φ=ψ or φ⊥ψ でない限り、
|| φ@φ - t ψ@ψ || > || φ - t ψ || となる実数 t が存在する。」
実際のところ、不等号"≧"はいつも正しく、等号"="が成り立つ t は 1 付近で孤立している。
もっとquantitativeな不等式に出来んものかのう?
ちなみに、φ=ψ でない限り、テンソル積を増やしていくと
|| φ@φ@… - ψ@ψ@・・・ || → 2 となるのはstandard formを考えれば分かる。

237さとう:2014/12/02(火) 13:16:26
cloneable, なんだか生物みたいだな。

238のろうゐるす:2015/01/27(火) 17:32:15
2頁の論文の定理は既に腕家によって示されておった。
しかも小樽講演の主題だったらしいよ。アーメン。

239のろうゐるす:2015/02/04(水) 17:20:16
>>213はG=SL(2,Z[1/p])やSL(3,Z)でもう駄目なことが分かった。
これを使って「羅怒問題」を最終的に解決することを目指したのだが、
とりあえず振出しに戻ったようだ。

240MMR:2015/02/04(水) 23:19:09
>>239
SL(3,Z)はともかく、SL(2,Z[1/p])も駄目なんですか。。意外な気がします。
「羅怒問題」は根が深そうですね。。

241のろうゐるす:2015/02/18(水) 06:04:33
可算離散群 G が確率空間 (X,m) に非特異に作用しているとき、G は L^∞(X,m) の
スペクトラムに作用するが、この作用はスペクトラムが有限集合でない限り、
minimalにはならない。なぜなら、L^∞(X,m)上の特異状態φを考えて、
ψ = Σ 2^{-n} g_nφ, ここで G={g_n}, とすると、ψはやはり特異状態なので
0でない射影 p で ψ(p)=0 となるものが存在する。このとき、任意の g に対して、
φ( gp )=0 となるから、有限個の gp で、X 全体を覆うことは出来ない。豆知識。

243のろうゐるす:2016/03/29(火) 23:35:03
Aが安定有限単純核型C*環でGが従順のとき、ベルヌイ積
 B := (\bigotimes_G A) \rtimes G
に関する富む図・瓶照る予想ってどうなってんの?QDは?
Aが単跡でない限り、T(B)はプール栓単体になるようだが。

244さとう:2016/03/30(水) 10:34:13
よく解らないですが、富む図もプール栓単体はどうかと言ってましたよ。
富む図はファラ波にプール栓単体を教えてもらったと言ってました。
プール栓単体の普遍性かなにかで他のショケ単体も解ったりするんですか?

245のろうゐるす:2016/03/30(水) 14:34:23
他のことは知らんが、ベル縫いについてはMR1475550 (99f:28029)を読むと分かるんじゃないか。

246さとう:2016/03/31(木) 09:09:33
勉強になります。でも掲示板に載ると競争率が上がりそうで複雑です。

247のろうゐるす:2016/05/07(土) 22:00:17
ほうほう。>>21が解けたらしい。10年も経ったのか。。。

248のろうゐるす:2017/01/23(月) 10:13:49
単位的C*環のユニタリ群が稠密かつ(離散群として)従順な部分群を
持ったら、可換?非可換有限次元表現がないことはすぐにわかるのだが。

249ほむす:2017/02/10(金) 15:58:06
A が可換vN環で M_i, i=1,2 が因子環、vNテンソル積 A \otimes M_i が
同型だったら、M_i は同型ですよね? こんなことは当たり前ですか?

250???:2017/02/10(金) 17:13:51
ディクシミエの教科書の直積分のところの主張(命題3の系+命題11)を組み合わせたら出るんじゃないのかな?可分性が要るけど...当たり前とは違うと思うけど.

251のろうゐるす:2017/02/12(日) 16:20:36
A \otimes M から M への全射準同型が存在するから、M に可分性の仮定がある場合は、
(M が可分前双対を持つときは)M の可分Hilbert空間への作用はnormalなものに限る
という事実を使えば直積分を経由しなくとも証明できそう。一般の因子環 M でも、
M から M への準同型はnormalなものに限るんじゃないか?ふむう。

252???:2017/02/13(月) 00:17:35
うーん、言われてみればそれっぽいけど、どうやって示すんだろう。

253のろうゐるす:2017/02/17(金) 12:56:31
>>251
>A \otimes M から M への全射準同型が存在する
ふむう。そのようことはないね。

254???:2017/02/17(金) 17:09:12
可分でなくても良いと思うんだけど、直積分使わない方法は思いつきませんね。誰か思いつく人がいたら教えて欲しい。

255のろうゐるす:2017/05/26(金) 10:15:04
>>221>>249をmathoverflowに投稿しといた。誰かが解いてくれるじゃろう。

257のろうゐるす:2017/06/13(火) 10:36:24
G が離散群で N が従順正規部分群,G のユニタリ表現 π が正則表現 λ に
弱包含され(つまり,C*(λ(G)) から C*(π(G)) への準同型が連続),
さらに N ⊂ ker π のとき,π は G/N の正則表現に弱包含される?
\ell_\infty(G/N) ⊂ \ell_\infty(G) から B(H_π) への G/N-共変写像があるから
G/N が完全群のときは正しいんだけどね.N の上に G-N-不変平均が
あるときも正しい.

259まことふ:2017/08/13(日) 22:44:15
群コホの相当基礎的な一般論(?)
可換群 M に離散群 G の自明作用を考えた時のコホモロジー H*(G; M) は f: G^{n+1} -> M で
不変性 f(g g0, ..., g gn) = f(g0, ..., gn)
を満たすものに微分
(d f)(g0, ..., g(n+1)) = \sum (-1)^i f(g0, ..., giは外す, ..., g(n+1))
を入れたbar complexで計算できることはよく知られている。Gromovによると M が標数0の体上のベクトル空間なら
f(g(s(0)), ..., g(s(n))) = (-1)^|s| f(g0, ..., gn)
を満たすalternating cochainの部分複体が既に H*(G; M) を計算しているらしい。
これはなぜ?(よくある単体複体のcochainの反対称化の議論は頂点集合上に順序を入れるので不変性を壊してしまう)
M が可除群(T や Q/Z など)でもいいの?

260のろうゐるす:2017/08/14(月) 20:11:08
反対称化って
f \mapsto \sum_{s \in Sym(n+1)} sign(s) f \circ s
のことか? 不変性が壊れているようには見えないぞ。

261まことふ:2017/08/14(月) 21:13:14
その写像(の 1/n! 倍)がコホモロジーに同型を誘導するのを示さないといけないですが,単体複体の
コホモロジーについて類似のことを示す際,普通は頂点の間に適当に設定した全順序を使った議論を
するので,安直にはG不変性を保った形でbar complexについての議論にはできないと思いますよ。

262のろうゐるす:2017/08/15(火) 07:23:38
ふむう。コホモロジーは、条件(何とか入射的)を満たすresolutionなら何を
使ってもカノニカルに同型となるはず。つまり、余鎖の空間 C(G^{n+1};M) から
交代余鎖の空間 C_alt(G^{n+1};M) への写像
f \mapsto |Sym(n+1)|^{-1}\sum_{s \in Sym(n+1)} sign(s) (f \circ s)
と包含写像 C_alt(G^{n+1};M) -> C(G^{n+1};M) はどちらも複体の準同型だけど、
C(G^{n+1};M)上の任意の複体の準同型は最初のところが同型ならコホモロジーに
同型を導くはず。C_alt(G^{n+1};M)の方も同様だと思うよ。

263まことふ:2017/08/15(火) 10:44:32
そうか,反対称化子を bar chain complex (Q[G^{n+1}])_{n=0,1,..} に作用させた時の像として得られる
直和因子が自明表現 Q の Q[G] 加群としての射影分解になってる,ってだけのことでしたね。
ありがとうございます。加除群のことを気にしすぎて心が曇っていたようです。

264のろうゐるす:2017/08/15(火) 17:06:20
A:=L^∞[0,1] ⊂ M:=B(L^2[0,1]) に対して次が成り立つと思うんだがどうだろう。
 ∀x∈M, ∀ε>0 に対して∃ p,q∈A 非零射影 s.t. || pxq || < ε || x ||.
ここで「∀ε>0」は「∃0<ε<1」に代えてもよいのであろう。

265のろうゐるす:2017/09/18(月) 02:42:49
>>264 mathoverflowで解決した。役に立たない方だけどね。一人で研究してると、
どうしても煩悩に惑わされて(正しければウヒ!、間違っていたら計画がパー)
本気で痛みが伴う方を追求できないから、冷静な人に聞いてみるのはいいことだ。

266まことふ:2017/10/24(火) 12:13:47
授業の準備をしている途中でテリーマンのブログ記事 (2016.04.22) がこれに含まれてるのに気がついたけど:
http://www.jstor.org/stable/2034534
作用素環版も誰かどこかで使ってましたっけ?

267まことふ:2017/10/24(火) 12:18:21
含まれてるってほどではないか。

268のろうゐるす:2017/10/26(木) 14:18:57
そんな面倒なことをしなくとも、AがC*環で\phiが忠実状態のとき、
線形写像 T: A -> A が || T(x) ||_2 \le K || x || を満たすなら、
一様有界性原理から
|| \phi( aT( . ) ) || \le C || a ||_{L^1(\phi)}
が成り立ち、Tが有界なことが分かるよ。

269のろうゐるす:2017/12/18(月) 16:48:47
Gを可算離散群とし、F(G)をGを基底とする自由群とする。
GはGに左から作用し、従ってF(G)に自己同型で作用し、
さらにC*(F(G))に作用する。今、単位的G-C*環 B と
G-イデアル J とG-ucp写像 T: C*(F(G)) -> B/J が勝手に
与えられたとして、T は B へのG-ucp写像に持ち上がる?
T が*準同型ならよいのであるが。

270のろうゐるす:2018/03/28(水) 12:13:23
もう必要なくなったんだけど、後学のために知っておきたいこと。
d 点集合上の確率測度 μ を有理確率測度 ν で近似することを考える:
|| μ - ν || < ε, ν(i) in (1/q)N for all i
このとき、分母 q = q(d,ε) をなるべく小さく取るとどれくらい?
trivialな評価は、max( d, 1/ε ) ≦ q(d,ε) ≦ d/ε だけど、どっちかというと
左寄りじゃないかと思うんだが、はてさて。

272のろうゐるす:2019/04/01(月) 14:52:33
http://jbbs.shitaraba.net/bbs/read.cgi/study/7140/1473054478/277
を一般化すると、 P ⊂ N ⊂ M に対して
・∃T: M -> N such that T|_P = id_P
・P-N 加群として L^2(N) < L^2(M)
が同値になると思うんだけど、どうなんだろうか?

273のろうゐるす:2019/04/30(火) 12:33:48
次の形のDiniの定理の非可換版って成り立つの?
「a_i が C*環 A の減少ネット(列)で純粋状態空間 P(A) 上で
零に収束するのであれば、ノルムで零に収束する」
ふと気になっただけだけど、多分ダメなんだろうな。

274名無しさん:2019/04/30(火) 16:02:58
Aはユニッタルとしていいですよね.(ユニテゼーションすればよいので)
0にノルム収束しないとして,ノルムのlimをC>0とすれば
ステイト空間のコンパクト性から,
\varphi(a_i)\geq Cをすべてのiで満たすステイトが一つは存在します.
こういうステイトの集合はステイト空間のフェイスになっているはずなので,
そのエクストリマル点を取れば,条件に反しませんか.

275のろうゐるす:2019/04/30(火) 16:06:03
ほうほう。簡単だったな。

276のろうゐるす:2019/08/28(水) 10:09:11
この問題が気になる
https://mathoverflow.net/questions/338936/quantum-inspired-matrix-inequality
反例はimprobableだがimpossibleとまでは見えない。

277のろうゐるす:2020/05/27(水) 11:40:20
有限型von Neumann環 M とその部分環 N があったら、
いつも正規条件付き期待値があるんだよね?だれか知らない?
M のσ有限な中心射影の増大ネット z_i で 1 に収束する
ものをとれば、E_i: Mz_i -> Nz_i は見つけられるから、
Nz_i をnon-unitalに M に埋め込むことで E_i を M 上の写像と
みて極限操作すると M から N への条件付き期待値は見つかる
けど、これじゃ正規にはならないね。

278のろうゐるす:2020/05/27(水) 12:05:51
昼めし食いに行ったらあっという間に解けた。
M がσ有限vN環の直和なら、勝手な埋め込み N ⊂ M は、
N = π N_j ⊂ M_0=π M_j と Θ: N -> M_1 を使って
N ∋ x -> (x,Θ(x)) ∈ M_0 \oplus M_1 = M と書ける。
ここで、各 N_j ⊂ M_j はσ有限。

279のろうゐるす:2020/05/28(木) 16:41:46
ちょっと間違ってたね。N'∩Mの射影で切る操作も入れておかないと。

280ぽびどん:2020/09/22(火) 12:34:46
>>157 それより弱い結果だけど、どうかな
https://arxiv.org/abs/2009.06940

281のろうゐるす:2022/01/11(火) 11:43:16
ふと気になったHecke環についての質問です。
(G,H)がHecke対、つまり H が G でcommensuratedなとき、
任意の G ユニタリ表現 (π,V) を V^H (H-invariant vectors) への
射影 p で切ると、V^H 上の Hecke環 H(G,H) の表現が出来る:
HgH -> p π(g) p
Hecke環 H(G,H) の任意の表現がこのような形をしているのは
どんなとき?
言い換えると、普遍包絡C*環 H_max(G,H) が p C*_max(G) p と
同型になるのはいつ?

282のろうゐるす:2022/01/11(火) 18:03:38
聞いたところによるとSchlichting completionを
考えたら当たり前らしいな。

283名無しさん:2022/01/11(火) 18:24:38
ふ〜ん。これのQ 6.16だったりする?(適当)
https://doi.org/10.1017/S0013091506001419

284のろうゐるす:2022/01/12(水) 10:04:50
うむ。ありがとう。
Schlichting completionを考えても何の得にもならんかったな。

285名無しさん:2022/01/19(水) 11:02:41
arXiv:2003.03469
一年以上ぐだぐだやって、結局主定理の一つは撤回か。
誰かが綺麗にしてくれるからって、
うんこやションベンその辺で垂れ流してるのとやってること変わらんな(^^;

286のろうゐるす:2022/01/19(水) 18:06:20
ほうほう。荒れとるねえ。
ひょっとして1.6ってBCの定理から明らかなのでは?

287ぷるぷ:2022/01/19(水) 18:24:51
そうだね。>1.6
俺はもう相手にするのはやめた。
次に周る人、頑張ってね。

結局この人たちはアレコレ名前つけた以外従順作用については何も貢献なかったね。
挙句人の定理の自明な系を自分の結果のように振る舞ったり、
どんどんどーでもいい自明なこと書き足していってページ水増ししていく醜悪さよ。

288名無しさん:2022/01/21(金) 11:56:29
こんな論文でも権力やコネがあれば
何度でも不死鳥のように蘇って通るまでやり直しできるんだってな。(fair and balanced とは一体…?)

289たれながさん:2022/02/10(木) 13:52:49
elibm.org/article/10012164

(悪意があるわけでなく,単純に無能力なんだろうが)
暗号解読と同じで,もっともらしいものをでっちあげる手間より
内容を検証して間違い探しするほうがずっとたいへんだよね.
くどくどと長文書いて,その中に一行嘘(願望)を仕込めば,なんでも「証明」できるからね.
そういえば,第三著者が入ってる100ページくらいの論文でも,肝心なところでお粗末で致命的なやらかしを見つけたこともあったな.
完全に時間の無駄よね.

内容に対する責任(研究費とか,ポジション)があとで追及されないような仕組みになっている以上,
破綻するのは必然で不可避であろう.
信頼度の低い論文を量産しているメイワクな人たちをシステムとして
どう排除・制裁していくかがカギとなるんじゃなかろうか.

290のろうゐるす:2022/02/11(金) 23:03:34
ふむ。4.3で(AxG)xKと(AxK)xGの同一視がおかしいということかな。
たぶんこねくり回してたらうまくいったと思っちゃたんだろうな。
森田一貫性はG-cp写像と接合積との一貫性だから、ないと困るもんね。
ふむう。しかし正しくないような気がしないでもない。

291ぷるぷる:2022/02/22(火) 12:15:48
arXiv:2202.09809
まだ準備論文だけだけど、本当にできるんだな。(正確な分類定理の主張はまだ出てないけど。)
分類定理の信頼できそうな証明も出るらしいし、
globalncgseminar.org/talks/tba-29/
群作用も含めて分類周辺(の意味があり、できそうなこと)は終わりやね

292さとう:2022/02/22(火) 12:49:52
僕が学生の頃から終わりだと言われてました

293のろうゐるす:2022/02/22(火) 17:31:03
ほうほう。俺もずーっともう終わりだと言い続けてきた。
その間[TWW]が出たりもしたけど、いつかは予言が実現するもんな。
後はUCTとTW予想の完全解決だな。

それはそうとロシアのウクライナ進駐を受けていよいよICMも
開催が危ぶまれるな。多くの国が渡航中止勧告を出すだろうし。

294名無しさん:2022/02/22(火) 21:31:18
因縁でっち上げてちょっとずつ切り崩されて乗っ取られていく様は、
日本の大学の将来を見ているようですね!

295のろうゐるす:2022/02/23(水) 16:21:45
https://www.ams.org/news?news_id=6987
早くも動きがあり。"AMS leadership"はleadershipという
だけのことはある。大勢は決したか?

296のろうゐるす:2022/02/23(水) 22:00:04
ふむう。IMUは寄り合い所帯だしもっと責任重大だから、
何らかの発表があるのは1週間くらい先のことになるのかな。
最終的には完全オンライン化なんてどうじゃろうか?

297ぷるぷり:2022/02/23(水) 22:15:42
せっかくの招待講演者たちがかわいそうだね。
なんで巴里にしなかったんだい?

298ぷる:2022/03/12(土) 19:34:27
こんばんは。質問です。
ユニッタル(単純)AF環cl(/bigcup A_n) 上のステイト/phiがあったとき、
/int_[U(A_n)]/phi(u ・u*)du
は収束する?トレースに集積することはわかるんだけどね。

299のろうゐるす:2022/03/14(月) 10:22:25
あまり正しそうな気がしないが、俺は単純AF環でmonotracialでないもの
の例すら知らんから、反例を作ることは出来ないな。

300のろうゐるす:2022/03/16(水) 09:31:13
>>297
幾つかのソースから、IMUがロシアの提示したカネに釣られた
と聞いた。この度のキャンセルの結果、IMUはロシアから貰う
はずだったカネがなくなったので財政状況がずいぶん悪いらしい。
ICMもオリンピック同様カネ目の話だったのかしら。。。
辺留市区さんのコメント
https://www.facebook.com/dmitry.kleinbock/posts/10101689163963769
ICM2022がロシアに決まった際の俺のコメント
https://jbbs.shitaraba.net/bbs/read.cgi/study/7140/1473054478/217

301名無しさん:2022/03/16(水) 11:57:32
ほうほう。某うちゅうといい、
数学者は毒饅頭とソーシャルハックにはめっぽう弱いのう。

302のろうゐるす:2022/03/16(水) 12:24:49
プーチンのようなオイルリッチな独裁者は、自分の見栄えのいい写真を
撮るためになら10億円くらいポンと出してくれるからな。シベリア虎の
保護とか、ナントカ数えきれない。

まあプーチンを選んだ前総裁は責任なしというわけにはいかんだろう。
何か発言しとかないと立場が悪くなるんじゃないか。

303のろうゐるす:2022/03/17(木) 13:51:43
IMUはそもそも大してお金持っていない。IMUによればICM開催には
現在7億円くらい必要で(なんでそんなに掛かるんでしょうね?)、
参加費1億円を引いた残りの6億円くらいをどうにか用意しないと
ならない。昔、日本でやった時は小平さんとかが必死に走り回って
企業から献金を集めたそうな。

304:2022/03/17(木) 23:16:31
Zoomなのにそんなにかかるの?
まあ大きくて権威のある組織にはシロアリがいっぱいいるからねえ。

305のろうゐるす:2022/03/18(金) 09:43:51
もちろんzoomならそんなに掛からないよ。
現地開催の場合。数字はIMUの資料による。
https://www.mathunion.org/icm/icm-2026
2026は中島総裁で会場はPhiladelphia。
トランプ大統領ではありませんように。

306ぷる:2022/04/07(木) 14:57:31
非可換(fg)自由群は(標準的な対称生成集合に対して)非有界正値調和関数を持つよね。
これって群の従順性と関係するんでしょうか。
Zだと等差数列なので正値にはならず、素人としては何か関係しそうですが。。
なんとなく病的分解と関係しそう?

307のろうゐるす:2022/04/07(木) 20:15:04
非定数有界調和関数の有無はLiouville propertyとしてよく研究されてるけど、
非有界正値調和関数はどうなんだろ。
abel群なら調和関数はadditive homに限る。
有界調和関数の空間 H^\infty(G) \cong L^\infty(\partial G) が無限次元なら
正値関数に対して、sup-norm と 原点での値 f(e) (= \partial G 上の積分値)が
同値でないから、一様有界性原理で非有界正値調和関数を見つけられる。
ベキ零群とか扱いたいのならHarnack不等式とか?よく知らん。

308ぷるっ:2022/04/08(金) 15:37:46
なるほど。遠くで大きくなるのを足し上げていくと確かに作れますね。さんくす
そういう分解を持たないものはどれくらいあるんだろう?

309ぷる:2022/04/15(金) 14:30:19
>>291, 292 もうちょっとだけ続くらしいよ。
arXiv:2204.04480

 (でも抽象的な分類とかでたら、すぐに陥落するんじゃろな〜)

310ぷるぷる:2022/05/01(日) 15:33:54
なんか色々トラブルに巻き込まれそうなので、
丸精油行きは断念!
ただでキャンセルできたけど、時間は結構無駄にしたな
結局某本航空の予約サイトのルートはインチキっぽいね。
鶴居の時もトラブったし、寛容な俺でも流石にもう使う気にならんよな。

ルーマニア行く人、面白いことが起きたらブログでレポお願いします。

311みーしゃ:2022/05/01(日) 22:57:48
そういう不自由なんか誰のためにも地球のためにもならんことだし,
これからCO2やなんやかやの問題に人類が対処していかねばならん時に
ほんといらんことしてくれたわ奴は.
一体どれだけの人の人生がこれまで,これから狂っていくのだろうか.
2月23日の日付のままの小学校の黒板に心が痛むわ.

312のろうゐるす:2022/08/30(火) 14:38:42
C*環 A が可分単純非可換のとき、Aの超冪はnonzero characterを持たない?
当たり前のような、そうでないような。

313さとう:2022/08/30(火) 15:16:32
ラーダムとロバートが似たことを考えていましたよ。Aを動かして超羃にすれば持つような気がします。
https://arxiv.org/abs/1106.5523

314のろうゐるす:2022/08/30(火) 17:37:42
なるほど。ありがとう。これでmathoverflowの問題が解けた。

315のろうゐるす:2022/08/30(火) 17:40:41
追伸:Aを動かさなければ、持たないね。

316ぷるぷる:2022/08/30(火) 17:44:15
>>315 ホント?ユニっタルならもちろんそうですが・・・

317のろうゐるす:2022/08/30(火) 17:49:41
ああ、そうだ。ユニっタルじゃなければ、>>313の反例をc_0直和した
ものが反例になるな。

318のろうゐるす:2022/08/30(火) 17:50:23
あれっ?単純にしたかったんだっけ?そこをなんとか。

319ぷるぷる:2022/11/07(月) 18:09:32
第二可算局所コンパクト群は有限生成局所コンパクトに閉に埋め込めるんでしたでしょうか?
と聞こうと思ったけど、できないらしいどすねえ ふっしぎ〜😮
https://www.normalesup.org/~cornulier/embed.pdf
(>>309は離散でなくてもひねるところ変えればできたっぽいけど、有限生成じゃないと今のところダメなんよね😓)

320のろうゐるす:2023/06/26(月) 21:09:13
C*環 A の元 x の極分解をしたいのだが、 x = u|x| として、
p := 1_[ε,∞](|x|) in A^{**} としたとき、
partial isometry v in A で || xp - v|x|p || < ε となるものは
存在しますか?

321ぷるぷる:2023/06/26(月) 23:08:40
非自明射影がなくて安定階数2以上なら無理なんじゃないでしょうかね😉 可換でも無理やろな😥
結局xpもxに近い(絶対値も同様)から、もしあれば可逆元で近似できてしまうやん😌
というか回転数考えれば円盤でも当たり前か🙂


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板