したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

おしえてえらいひと

307のろうゐるす:2022/04/07(木) 20:15:04
非定数有界調和関数の有無はLiouville propertyとしてよく研究されてるけど、
非有界正値調和関数はどうなんだろ。
abel群なら調和関数はadditive homに限る。
有界調和関数の空間 H^\infty(G) \cong L^\infty(\partial G) が無限次元なら
正値関数に対して、sup-norm と 原点での値 f(e) (= \partial G 上の積分値)が
同値でないから、一様有界性原理で非有界正値調和関数を見つけられる。
ベキ零群とか扱いたいのならHarnack不等式とか?よく知らん。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板