そんな面倒なことをしなくとも、AがC*環で\phiが忠実状態のとき、
線形写像 T: A -> A が || T(x) ||_2 \le K || x || を満たすなら、
一様有界性原理から
|| \phi( aT( . ) ) || \le C || a ||_{L^1(\phi)}
が成り立ち、Tが有界なことが分かるよ。
有限型von Neumann環 M とその部分環 N があったら、
いつも正規条件付き期待値があるんだよね?だれか知らない?
M のσ有限な中心射影の増大ネット z_i で 1 に収束する
ものをとれば、E_i: Mz_i -> Nz_i は見つけられるから、
Nz_i をnon-unitalに M に埋め込むことで E_i を M 上の写像と
みて極限操作すると M から N への条件付き期待値は見つかる
けど、これじゃ正規にはならないね。
昼めし食いに行ったらあっという間に解けた。
M がσ有限vN環の直和なら、勝手な埋め込み N ⊂ M は、
N = π N_j ⊂ M_0=π M_j と Θ: N -> M_1 を使って
N ∋ x -> (x,Θ(x)) ∈ M_0 \oplus M_1 = M と書ける。
ここで、各 N_j ⊂ M_j はσ有限。
ふと気になったHecke環についての質問です。
(G,H)がHecke対、つまり H が G でcommensuratedなとき、
任意の G ユニタリ表現 (π,V) を V^H (H-invariant vectors) への
射影 p で切ると、V^H 上の Hecke環 H(G,H) の表現が出来る:
HgH -> p π(g) p
Hecke環 H(G,H) の任意の表現がこのような形をしているのは
どんなとき?
言い換えると、普遍包絡C*環 H_max(G,H) が p C*_max(G) p と
同型になるのはいつ?