したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

おしえてえらいひと

1ウゴウゴ:2006/03/10(金) 14:13:50
わからないことがあったら、とりあえずきいてみようね♪

259まことふ:2017/08/13(日) 22:44:15
群コホの相当基礎的な一般論(?)
可換群 M に離散群 G の自明作用を考えた時のコホモロジー H*(G; M) は f: G^{n+1} -> M で
不変性 f(g g0, ..., g gn) = f(g0, ..., gn)
を満たすものに微分
(d f)(g0, ..., g(n+1)) = \sum (-1)^i f(g0, ..., giは外す, ..., g(n+1))
を入れたbar complexで計算できることはよく知られている。Gromovによると M が標数0の体上のベクトル空間なら
f(g(s(0)), ..., g(s(n))) = (-1)^|s| f(g0, ..., gn)
を満たすalternating cochainの部分複体が既に H*(G; M) を計算しているらしい。
これはなぜ?(よくある単体複体のcochainの反対称化の議論は頂点集合上に順序を入れるので不変性を壊してしまう)
M が可除群(T や Q/Z など)でもいいの?

260のろうゐるす:2017/08/14(月) 20:11:08
反対称化って
f \mapsto \sum_{s \in Sym(n+1)} sign(s) f \circ s
のことか? 不変性が壊れているようには見えないぞ。

261まことふ:2017/08/14(月) 21:13:14
その写像(の 1/n! 倍)がコホモロジーに同型を誘導するのを示さないといけないですが,単体複体の
コホモロジーについて類似のことを示す際,普通は頂点の間に適当に設定した全順序を使った議論を
するので,安直にはG不変性を保った形でbar complexについての議論にはできないと思いますよ。

262のろうゐるす:2017/08/15(火) 07:23:38
ふむう。コホモロジーは、条件(何とか入射的)を満たすresolutionなら何を
使ってもカノニカルに同型となるはず。つまり、余鎖の空間 C(G^{n+1};M) から
交代余鎖の空間 C_alt(G^{n+1};M) への写像
f \mapsto |Sym(n+1)|^{-1}\sum_{s \in Sym(n+1)} sign(s) (f \circ s)
と包含写像 C_alt(G^{n+1};M) -> C(G^{n+1};M) はどちらも複体の準同型だけど、
C(G^{n+1};M)上の任意の複体の準同型は最初のところが同型ならコホモロジーに
同型を導くはず。C_alt(G^{n+1};M)の方も同様だと思うよ。

263まことふ:2017/08/15(火) 10:44:32
そうか,反対称化子を bar chain complex (Q[G^{n+1}])_{n=0,1,..} に作用させた時の像として得られる
直和因子が自明表現 Q の Q[G] 加群としての射影分解になってる,ってだけのことでしたね。
ありがとうございます。加除群のことを気にしすぎて心が曇っていたようです。

264のろうゐるす:2017/08/15(火) 17:06:20
A:=L^∞[0,1] ⊂ M:=B(L^2[0,1]) に対して次が成り立つと思うんだがどうだろう。
 ∀x∈M, ∀ε>0 に対して∃ p,q∈A 非零射影 s.t. || pxq || < ε || x ||.
ここで「∀ε>0」は「∃0<ε<1」に代えてもよいのであろう。

265のろうゐるす:2017/09/18(月) 02:42:49
>>264 mathoverflowで解決した。役に立たない方だけどね。一人で研究してると、
どうしても煩悩に惑わされて(正しければウヒ!、間違っていたら計画がパー)
本気で痛みが伴う方を追求できないから、冷静な人に聞いてみるのはいいことだ。

266まことふ:2017/10/24(火) 12:13:47
授業の準備をしている途中でテリーマンのブログ記事 (2016.04.22) がこれに含まれてるのに気がついたけど:
http://www.jstor.org/stable/2034534
作用素環版も誰かどこかで使ってましたっけ?

267まことふ:2017/10/24(火) 12:18:21
含まれてるってほどではないか。

268のろうゐるす:2017/10/26(木) 14:18:57
そんな面倒なことをしなくとも、AがC*環で\phiが忠実状態のとき、
線形写像 T: A -> A が || T(x) ||_2 \le K || x || を満たすなら、
一様有界性原理から
|| \phi( aT( . ) ) || \le C || a ||_{L^1(\phi)}
が成り立ち、Tが有界なことが分かるよ。

269のろうゐるす:2017/12/18(月) 16:48:47
Gを可算離散群とし、F(G)をGを基底とする自由群とする。
GはGに左から作用し、従ってF(G)に自己同型で作用し、
さらにC*(F(G))に作用する。今、単位的G-C*環 B と
G-イデアル J とG-ucp写像 T: C*(F(G)) -> B/J が勝手に
与えられたとして、T は B へのG-ucp写像に持ち上がる?
T が*準同型ならよいのであるが。

270のろうゐるす:2018/03/28(水) 12:13:23
もう必要なくなったんだけど、後学のために知っておきたいこと。
d 点集合上の確率測度 μ を有理確率測度 ν で近似することを考える:
|| μ - ν || < ε, ν(i) in (1/q)N for all i
このとき、分母 q = q(d,ε) をなるべく小さく取るとどれくらい?
trivialな評価は、max( d, 1/ε ) ≦ q(d,ε) ≦ d/ε だけど、どっちかというと
左寄りじゃないかと思うんだが、はてさて。

272のろうゐるす:2019/04/01(月) 14:52:33
http://jbbs.shitaraba.net/bbs/read.cgi/study/7140/1473054478/277
を一般化すると、 P ⊂ N ⊂ M に対して
・∃T: M -> N such that T|_P = id_P
・P-N 加群として L^2(N) < L^2(M)
が同値になると思うんだけど、どうなんだろうか?

273のろうゐるす:2019/04/30(火) 12:33:48
次の形のDiniの定理の非可換版って成り立つの?
「a_i が C*環 A の減少ネット(列)で純粋状態空間 P(A) 上で
零に収束するのであれば、ノルムで零に収束する」
ふと気になっただけだけど、多分ダメなんだろうな。

274名無しさん:2019/04/30(火) 16:02:58
Aはユニッタルとしていいですよね.(ユニテゼーションすればよいので)
0にノルム収束しないとして,ノルムのlimをC>0とすれば
ステイト空間のコンパクト性から,
\varphi(a_i)\geq Cをすべてのiで満たすステイトが一つは存在します.
こういうステイトの集合はステイト空間のフェイスになっているはずなので,
そのエクストリマル点を取れば,条件に反しませんか.

275のろうゐるす:2019/04/30(火) 16:06:03
ほうほう。簡単だったな。

276のろうゐるす:2019/08/28(水) 10:09:11
この問題が気になる
https://mathoverflow.net/questions/338936/quantum-inspired-matrix-inequality
反例はimprobableだがimpossibleとまでは見えない。

277のろうゐるす:2020/05/27(水) 11:40:20
有限型von Neumann環 M とその部分環 N があったら、
いつも正規条件付き期待値があるんだよね?だれか知らない?
M のσ有限な中心射影の増大ネット z_i で 1 に収束する
ものをとれば、E_i: Mz_i -> Nz_i は見つけられるから、
Nz_i をnon-unitalに M に埋め込むことで E_i を M 上の写像と
みて極限操作すると M から N への条件付き期待値は見つかる
けど、これじゃ正規にはならないね。

278のろうゐるす:2020/05/27(水) 12:05:51
昼めし食いに行ったらあっという間に解けた。
M がσ有限vN環の直和なら、勝手な埋め込み N ⊂ M は、
N = π N_j ⊂ M_0=π M_j と Θ: N -> M_1 を使って
N ∋ x -> (x,Θ(x)) ∈ M_0 \oplus M_1 = M と書ける。
ここで、各 N_j ⊂ M_j はσ有限。

279のろうゐるす:2020/05/28(木) 16:41:46
ちょっと間違ってたね。N'∩Mの射影で切る操作も入れておかないと。

280ぽびどん:2020/09/22(火) 12:34:46
>>157 それより弱い結果だけど、どうかな
https://arxiv.org/abs/2009.06940

281のろうゐるす:2022/01/11(火) 11:43:16
ふと気になったHecke環についての質問です。
(G,H)がHecke対、つまり H が G でcommensuratedなとき、
任意の G ユニタリ表現 (π,V) を V^H (H-invariant vectors) への
射影 p で切ると、V^H 上の Hecke環 H(G,H) の表現が出来る:
HgH -> p π(g) p
Hecke環 H(G,H) の任意の表現がこのような形をしているのは
どんなとき?
言い換えると、普遍包絡C*環 H_max(G,H) が p C*_max(G) p と
同型になるのはいつ?

282のろうゐるす:2022/01/11(火) 18:03:38
聞いたところによるとSchlichting completionを
考えたら当たり前らしいな。

283名無しさん:2022/01/11(火) 18:24:38
ふ〜ん。これのQ 6.16だったりする?(適当)
https://doi.org/10.1017/S0013091506001419

284のろうゐるす:2022/01/12(水) 10:04:50
うむ。ありがとう。
Schlichting completionを考えても何の得にもならんかったな。

285名無しさん:2022/01/19(水) 11:02:41
arXiv:2003.03469
一年以上ぐだぐだやって、結局主定理の一つは撤回か。
誰かが綺麗にしてくれるからって、
うんこやションベンその辺で垂れ流してるのとやってること変わらんな(^^;

286のろうゐるす:2022/01/19(水) 18:06:20
ほうほう。荒れとるねえ。
ひょっとして1.6ってBCの定理から明らかなのでは?

287ぷるぷ:2022/01/19(水) 18:24:51
そうだね。>1.6
俺はもう相手にするのはやめた。
次に周る人、頑張ってね。

結局この人たちはアレコレ名前つけた以外従順作用については何も貢献なかったね。
挙句人の定理の自明な系を自分の結果のように振る舞ったり、
どんどんどーでもいい自明なこと書き足していってページ水増ししていく醜悪さよ。

288名無しさん:2022/01/21(金) 11:56:29
こんな論文でも権力やコネがあれば
何度でも不死鳥のように蘇って通るまでやり直しできるんだってな。(fair and balanced とは一体…?)

289たれながさん:2022/02/10(木) 13:52:49
elibm.org/article/10012164

(悪意があるわけでなく,単純に無能力なんだろうが)
暗号解読と同じで,もっともらしいものをでっちあげる手間より
内容を検証して間違い探しするほうがずっとたいへんだよね.
くどくどと長文書いて,その中に一行嘘(願望)を仕込めば,なんでも「証明」できるからね.
そういえば,第三著者が入ってる100ページくらいの論文でも,肝心なところでお粗末で致命的なやらかしを見つけたこともあったな.
完全に時間の無駄よね.

内容に対する責任(研究費とか,ポジション)があとで追及されないような仕組みになっている以上,
破綻するのは必然で不可避であろう.
信頼度の低い論文を量産しているメイワクな人たちをシステムとして
どう排除・制裁していくかがカギとなるんじゃなかろうか.

290のろうゐるす:2022/02/11(金) 23:03:34
ふむ。4.3で(AxG)xKと(AxK)xGの同一視がおかしいということかな。
たぶんこねくり回してたらうまくいったと思っちゃたんだろうな。
森田一貫性はG-cp写像と接合積との一貫性だから、ないと困るもんね。
ふむう。しかし正しくないような気がしないでもない。

291ぷるぷる:2022/02/22(火) 12:15:48
arXiv:2202.09809
まだ準備論文だけだけど、本当にできるんだな。(正確な分類定理の主張はまだ出てないけど。)
分類定理の信頼できそうな証明も出るらしいし、
globalncgseminar.org/talks/tba-29/
群作用も含めて分類周辺(の意味があり、できそうなこと)は終わりやね

292さとう:2022/02/22(火) 12:49:52
僕が学生の頃から終わりだと言われてました

293のろうゐるす:2022/02/22(火) 17:31:03
ほうほう。俺もずーっともう終わりだと言い続けてきた。
その間[TWW]が出たりもしたけど、いつかは予言が実現するもんな。
後はUCTとTW予想の完全解決だな。

それはそうとロシアのウクライナ進駐を受けていよいよICMも
開催が危ぶまれるな。多くの国が渡航中止勧告を出すだろうし。

294名無しさん:2022/02/22(火) 21:31:18
因縁でっち上げてちょっとずつ切り崩されて乗っ取られていく様は、
日本の大学の将来を見ているようですね!

295のろうゐるす:2022/02/23(水) 16:21:45
https://www.ams.org/news?news_id=6987
早くも動きがあり。"AMS leadership"はleadershipという
だけのことはある。大勢は決したか?

296のろうゐるす:2022/02/23(水) 22:00:04
ふむう。IMUは寄り合い所帯だしもっと責任重大だから、
何らかの発表があるのは1週間くらい先のことになるのかな。
最終的には完全オンライン化なんてどうじゃろうか?

297ぷるぷり:2022/02/23(水) 22:15:42
せっかくの招待講演者たちがかわいそうだね。
なんで巴里にしなかったんだい?

298ぷる:2022/03/12(土) 19:34:27
こんばんは。質問です。
ユニッタル(単純)AF環cl(/bigcup A_n) 上のステイト/phiがあったとき、
/int_[U(A_n)]/phi(u ・u*)du
は収束する?トレースに集積することはわかるんだけどね。

299のろうゐるす:2022/03/14(月) 10:22:25
あまり正しそうな気がしないが、俺は単純AF環でmonotracialでないもの
の例すら知らんから、反例を作ることは出来ないな。

300のろうゐるす:2022/03/16(水) 09:31:13
>>297
幾つかのソースから、IMUがロシアの提示したカネに釣られた
と聞いた。この度のキャンセルの結果、IMUはロシアから貰う
はずだったカネがなくなったので財政状況がずいぶん悪いらしい。
ICMもオリンピック同様カネ目の話だったのかしら。。。
辺留市区さんのコメント
https://www.facebook.com/dmitry.kleinbock/posts/10101689163963769
ICM2022がロシアに決まった際の俺のコメント
https://jbbs.shitaraba.net/bbs/read.cgi/study/7140/1473054478/217

301名無しさん:2022/03/16(水) 11:57:32
ほうほう。某うちゅうといい、
数学者は毒饅頭とソーシャルハックにはめっぽう弱いのう。

302のろうゐるす:2022/03/16(水) 12:24:49
プーチンのようなオイルリッチな独裁者は、自分の見栄えのいい写真を
撮るためになら10億円くらいポンと出してくれるからな。シベリア虎の
保護とか、ナントカ数えきれない。

まあプーチンを選んだ前総裁は責任なしというわけにはいかんだろう。
何か発言しとかないと立場が悪くなるんじゃないか。

303のろうゐるす:2022/03/17(木) 13:51:43
IMUはそもそも大してお金持っていない。IMUによればICM開催には
現在7億円くらい必要で(なんでそんなに掛かるんでしょうね?)、
参加費1億円を引いた残りの6億円くらいをどうにか用意しないと
ならない。昔、日本でやった時は小平さんとかが必死に走り回って
企業から献金を集めたそうな。

304:2022/03/17(木) 23:16:31
Zoomなのにそんなにかかるの?
まあ大きくて権威のある組織にはシロアリがいっぱいいるからねえ。

305のろうゐるす:2022/03/18(金) 09:43:51
もちろんzoomならそんなに掛からないよ。
現地開催の場合。数字はIMUの資料による。
https://www.mathunion.org/icm/icm-2026
2026は中島総裁で会場はPhiladelphia。
トランプ大統領ではありませんように。

306ぷる:2022/04/07(木) 14:57:31
非可換(fg)自由群は(標準的な対称生成集合に対して)非有界正値調和関数を持つよね。
これって群の従順性と関係するんでしょうか。
Zだと等差数列なので正値にはならず、素人としては何か関係しそうですが。。
なんとなく病的分解と関係しそう?

307のろうゐるす:2022/04/07(木) 20:15:04
非定数有界調和関数の有無はLiouville propertyとしてよく研究されてるけど、
非有界正値調和関数はどうなんだろ。
abel群なら調和関数はadditive homに限る。
有界調和関数の空間 H^\infty(G) \cong L^\infty(\partial G) が無限次元なら
正値関数に対して、sup-norm と 原点での値 f(e) (= \partial G 上の積分値)が
同値でないから、一様有界性原理で非有界正値調和関数を見つけられる。
ベキ零群とか扱いたいのならHarnack不等式とか?よく知らん。

308ぷるっ:2022/04/08(金) 15:37:46
なるほど。遠くで大きくなるのを足し上げていくと確かに作れますね。さんくす
そういう分解を持たないものはどれくらいあるんだろう?

309ぷる:2022/04/15(金) 14:30:19
>>291, 292 もうちょっとだけ続くらしいよ。
arXiv:2204.04480

 (でも抽象的な分類とかでたら、すぐに陥落するんじゃろな〜)

310ぷるぷる:2022/05/01(日) 15:33:54
なんか色々トラブルに巻き込まれそうなので、
丸精油行きは断念!
ただでキャンセルできたけど、時間は結構無駄にしたな
結局某本航空の予約サイトのルートはインチキっぽいね。
鶴居の時もトラブったし、寛容な俺でも流石にもう使う気にならんよな。

ルーマニア行く人、面白いことが起きたらブログでレポお願いします。

311みーしゃ:2022/05/01(日) 22:57:48
そういう不自由なんか誰のためにも地球のためにもならんことだし,
これからCO2やなんやかやの問題に人類が対処していかねばならん時に
ほんといらんことしてくれたわ奴は.
一体どれだけの人の人生がこれまで,これから狂っていくのだろうか.
2月23日の日付のままの小学校の黒板に心が痛むわ.

312のろうゐるす:2022/08/30(火) 14:38:42
C*環 A が可分単純非可換のとき、Aの超冪はnonzero characterを持たない?
当たり前のような、そうでないような。

313さとう:2022/08/30(火) 15:16:32
ラーダムとロバートが似たことを考えていましたよ。Aを動かして超羃にすれば持つような気がします。
https://arxiv.org/abs/1106.5523

314のろうゐるす:2022/08/30(火) 17:37:42
なるほど。ありがとう。これでmathoverflowの問題が解けた。

315のろうゐるす:2022/08/30(火) 17:40:41
追伸:Aを動かさなければ、持たないね。

316ぷるぷる:2022/08/30(火) 17:44:15
>>315 ホント?ユニっタルならもちろんそうですが・・・

317のろうゐるす:2022/08/30(火) 17:49:41
ああ、そうだ。ユニっタルじゃなければ、>>313の反例をc_0直和した
ものが反例になるな。

318のろうゐるす:2022/08/30(火) 17:50:23
あれっ?単純にしたかったんだっけ?そこをなんとか。

319ぷるぷる:2022/11/07(月) 18:09:32
第二可算局所コンパクト群は有限生成局所コンパクトに閉に埋め込めるんでしたでしょうか?
と聞こうと思ったけど、できないらしいどすねえ ふっしぎ〜😮
https://www.normalesup.org/~cornulier/embed.pdf
(>>309は離散でなくてもひねるところ変えればできたっぽいけど、有限生成じゃないと今のところダメなんよね😓)

320のろうゐるす:2023/06/26(月) 21:09:13
C*環 A の元 x の極分解をしたいのだが、 x = u|x| として、
p := 1_[ε,∞](|x|) in A^{**} としたとき、
partial isometry v in A で || xp - v|x|p || < ε となるものは
存在しますか?

321ぷるぷる:2023/06/26(月) 23:08:40
非自明射影がなくて安定階数2以上なら無理なんじゃないでしょうかね😉 可換でも無理やろな😥
結局xpもxに近い(絶対値も同様)から、もしあれば可逆元で近似できてしまうやん😌
というか回転数考えれば円盤でも当たり前か🙂

322のろうゐるす:2023/06/27(火) 09:56:06
>>321 すまん。εが重なってた。 p:= 1_[1/2,∞] にしてくれ。
sr=1のときはぺ打線が示してるらしいな。さとうがそう言ってた。

323のろうゐるす:2023/06/27(火) 10:53:55
うむ。ダメだな。

324<削除>:<削除>
<削除>

325<削除>:<削除>
<削除>

326ぷるぷる:2023/07/12(水) 14:52:46
お、再来週夜の部で教えてくれるのかな?☺️

https://www.uni-muenster.de/MathematicsMuenster/events/2023/cstar-algebras.shtml
僕は所用で行けなくなったけど、君津さんのお話が面白そう😊

327のろうゐるす:2023/07/14(金) 09:15:36
政治犯として隔離されていた(らしい)キル老師が西側へ放り出されたとき、
君津が拾ったんだ。職を手配するにあたって、江風呂須らに評価を頼んだら、
自分には理解不能だがとにかく天才であるみたいな返答が来たそうだよ。
それで君津が頑張って職にねじ込んだんだけど、論文を全然出さないんで、
君津が借金取りばりに苛斂誅求して論文を書かせたそうだ。君津は、人類に
貢献したって回想してたよ。キル老師はその業績をもとに大学を移ったので、
以後単著論文が出なくなったんだ。

328ぷるぷる:2023/07/14(金) 11:17:38
感動的なエピソードよね
キルの論文は直接読んだことあんまないけど、徒然なるままに書いてあって訳がわからんかったわい😔
分類論文くらい、禿げさんのときみたいに、誰か整備して出版すればええのにね😌
結局あれは何があったんや?😟

https://arxiv.org/abs/2307.06480
第一弾、でたね☺️
ちなみに従順作用でもできるのか、って我部さんに聞いたら
UCTを3回crucialなところで使うから
KKをどう見ればいいのかわからん😆、Wテンソルしておけばできるんじゃね😉
って言っとった🙂 ナワちゃん、ピンチ?😚

329のろうゐるす:2023/07/14(金) 11:37:41
>>327 間違ってた。君津がハイデルベルグから移籍したんだった。

330のろうゐるす:2023/07/14(金) 12:04:55
>>328 追悼集会に間に合わせてきたね。

俺も追悼集会のための論文を書いた。ずーっと前から頭の中で出来てたことを
書いたんだけど(ユニタリ群の弱従順性の話で普通の人は興味ない)、証明を
詰めてみたら、実はもっと簡単にもっといいことが示せることが分かった。
やっぱりちゃんと紙に打ち付けないとだめだな。キル老師は8年間ものあいだ
ろくな紙もなしによく数学を続けられたな。

331<削除>:<削除>
<削除>

332ぷるぷる:2023/07/15(土) 17:59:18
https://www.nhk.or.jp/shutoken/chiba/article/014/29/
数おりには特に興味ないけど、中華は一位の常連国なんやな☺️
飛行機でIMOのTシャツ着てる人たちがたくさんおったわ😌
そういや昔サマースクールの講師やったけど、金払いが良くてびっくりしたわ😁

人口多いとはいえ、科学、少なくとも数学の世界で欧米が抜かれるのは時間の問題やろなぁ😙
人海戦術で虚偽論文告発し始めたら面白いんだけどねぇ😊
ほとんど何も残らなくなってしまう人、結構おると思う
ロビー活動、エッセイ・プレゼンコンペ、見切り発車の出鱈目論文濫造大会に堕落している現代欧州数学界では、
>>327のような美談が生まれることも今後なさそうやな😅

333のろうゐるす:2023/07/15(土) 20:24:58
1位中国、2位アメリカ、3位韓国だけど、アメリカの出場者の過半数はアジア系だぞ。

334ぷるぷる:2023/08/06(日) 19:48:03
arXiv:2307.08267
これの最後に書いてあるquestionってK1見れば
円盤テンソルZでもダメだと思うけど、僕が何か忘れているんでしょうか・・・?😴
Cf. >>321

335のろうゐるす:2023/08/06(日) 21:14:31
アレ、変なこと書いてあるね。str=1 はムリでも s(a) in closure(GL) に
なるかって聞こうと思ったはずだったんだよ。きっと時差ぼけのせいだな。

336ぷるぷる:2023/08/06(日) 22:21:52
ほうほう、定数列(あるいは直行列)考えれば同じ理由でダメなんとちゃう?😷

ルーベン、ええなぁ。。。伝説よ再び、おみやげよろしくぅ

337のろうゐるす:2023/08/07(月) 01:02:18
ふむう。Aが可換なら tsr( C*(F_\infty) \otimes A ) = 1 だと思ってたが違うのか?

338ぷるぷる:2023/08/07(月) 12:02:44
>>337 やっぱり円盤→円周のK1考えると正しくないよね😷
>>336 で書いてあるのもなんか変だった
free generatorだから大熊-禿-羅ダムを読めばできるのかもね☺️
僕が証明を読んだのは自由群環のときだけや😁

339のろうゐるす:2023/08/08(火) 17:13:15
ところでふと気になったのだが、単純核型C*環の分類って実係数の場合は
どうなってんの?たしか実C*環のほうが、KO群がたくさんあるんだよね?
実C*環 A_r の複素化 A_c は自分自身の複素共役と同型だけど、別の
実C*環 B_r の複素化 B_c が A_c と同型になっていると A_c になんか
変な共役自己同型ができるよね。きっとK理論になんか起きるんだよね?

340のろうゐるす:2023/08/08(火) 17:18:21
単に位数2の共役自己同型を分類するというだけの話だが、分類可能クラスでは
もうできてるのかのう?

341ぷるぷる:2023/08/08(火) 19:38:00
黒田の構成いじったらO2だけでも山ほどありそうやね・・・🙃

342のろうゐるす:2023/08/09(水) 05:12:53
そういや分類には興味ないんだけど、UCT問題は O_2 の任意の位数2の自己同型の
固定点環に対するUCTに帰着できるってキル老子が主張してたことがあったけど、
キル文書には書いてないね。我部によると位数2&位数3ならいいらしいけど。

343<削除>:<削除>
<削除>

344ぷるぷる:2023/11/01(水) 11:21:20
arxiv:2310.20594
第二弾?出たね☺️
ぼちぼち腰を据えて読んでみるか😌

345のろうゐるす:2023/11/01(水) 15:47:41
やった、査読者候補決定!

346ぷるぷる:2023/11/06(月) 11:02:46
内容フォローしてないけど、頑張っとるなインド人🇮🇳☺️🍛
arxiv:2311.01524

347のろうゐるす:2024/01/19(金) 16:35:52
サカイの定理:「C*環Aに全双対があればvN環」ってやつなんだけど、
A^{**}がvN環(かつσ-weak = σ(A^{**},A^*))であることを認めれば
id: A -> A=(A_*)^*がweak*-weak*連続写像 \pi: A^{**} -> A に
拡張出来て、\piがσ-weak-denseなところ(つまりA)で*-homだから
全体でσ-weak-weak*連続*-homが分かって証明終了だと思うんだけど、
なんか間違ってるか?ふむう。

348ぷるぷる:2024/01/19(金) 22:25:44
ふむふむ、Aの積がpredualの弱位相で連続かどうかわからないからダメみたいですよ、
0時の本に書いてあった☺️

349のろうゐるす:2024/01/20(土) 08:10:23
なるほど。歴史がゆがんだかと思っちゃったよ。

350ぷるぷる:2024/01/31(水) 18:14:50
ジンマー祭り@ポアンカレー、のろさんは行くのかな?🙂
剛性学校で連続講演聞いた時は最先端のハイテクツールが絡み合って
なかなかの大作だと思ったけど、その後進展はあったのかな?😌

351のろうゐるす:2024/03/27(水) 19:24:20
>>257
N<G が従順正規部分群のとき、C*_r(G) -> C*_r(G/N) の核は
{ (1-n)g : n in N, g in G }で張られるものとばかり思ってきたが、
完全性がないとそれが分からんということか。ふむう。

352ぷるぷる:2024/03/27(水) 21:23:34
StabilizationしたらG/Nの接合積だけど、
Nの自明表現はG-同変split持つから大丈夫ちゃうん?🙃
イデアルに射影作れるやろ😊

ナワちゃん、控訴しないって😥

353のろうゐるす:2024/03/28(木) 14:22:30
stabilizationの話は知らんけど、それってC*_r(G)をG/Nの捩じれ接合積で
書くって話とたぶん同じなのでは。捩じれがあって旨くいかないんだけど。

354ぷるぷる:2024/03/28(木) 15:57:15
Sectionが同変にならんのね😌

355のろうゐるす:2024/06/06(木) 18:12:01
ほう。mathoverflowで任意のC*環は極大閉イデアルを持つかって
聞かれたんだけど、そんなことも分かっていなかったとは不覚。
単純商が存在するかという問題と同値だね。非可分の反例なら
あるけど、可分のときはどうなんだろ?Glimmとか使えないかな。

356のろうゐるす:2024/06/07(金) 09:08:36
フツーに考えれば、任意の非単位的C*環 I に対して、非単位的拡大 I ◁ A で
I が A の唯一の極大閉イデアルになるようなものがあるよね?

357のろうゐるす:2024/06/07(金) 12:51:29
K. R. Goodearl & F. Wehrung がイデアル格子をAF環で実現してた。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板