したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

おしえてえらいひと

131のろうゐるす:2013/01/05(土) 11:45:45
初等的従順群のクラスEAとは、以下の条件を満たす最小のクラスのことだ。
(1) EAは、全ての有限群と無限巡回群Zの和集合 B を含む。
(2) EAは、部分群、商群、拡大、増大和について閉じている。
ある性質(P)がEAにおいて真であるためには、以下で十分であることが知られている。
(イ) 性質(P)は B において真である。
(ロ) 性質(P)は増大和、B による拡大(*)について閉じている。
(*: 1-> N -> G -> H -> 1で N \in (P) & H \in B => G \in (P).)
一般に初等的従順群のC*環の性質について知りたいのだが、近年の分類理論の中に、
群環が上の操作で閉じているようなクラスはないものだろうか。
Zによる拡大(半直積)だって、不変な忠実跡もあるわけだし。
何かしら非自明なことを示せれば、これらの環がQDであることも分かるだろう。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板