したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

遠藤高帆博士の論文

269セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:09:43
続き

4. Isolation of small cells from
TISSUES DERIVED FROM ALL THREE
GERM LAYERS
4.1 Introduction 63
4.2 Experimental - 63
4.2.1 Isolation of small cells from various tissues 64
4.2.2 Characterization of isolated small cells 64
m
4.2.3 Differentiation potential of sphere forming small cells 64
4.3 Results 65
4.3.1 Sphere formation from tissues derived from representative of the
three germ layers 65
4.3.2 Immature gene expression of spheres derived from tissues
representative of the three germ layers 66
4.3.3 Differentiation potential of Cells derived from tissues
representative of the three germ layers 67
4.3.4 Differentiation potential of cells in vivo 68
4.4 Summary of section 4 69
4.5 Discussion 69
4.6 References 76

270セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:11:54
続き

5.2.2 Genotyping 82
5.2.3 Immunohistological アナリシーズ - 82
5.3 Results - 83
5.3.1 Generation of chimera zygotes 83
5.3.2 アナリシーズ of adult chimera mice 83
5.3.3 アナリシーズ of chimera fetuses 83
5.4 Summary of section 5 - - 84
5.5 Discussion - 85
5.6 References 93

271セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:13:34
続き

6. Future prospects
6.1 General overview - - - - 95
6.2 Cell source for tissue engineering regenerative medicine 95
6.3 Future issues - 96
APPENDIX - 97
• Material and method
• Primer sequences
ACKNOWLEDGEMENTS - los
CURRICULUM VITAE

272セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:15:58
以上、目次終り。次はバックグラウンド。

1.Background
1.1 General Introduction
• Importance of stem cells
Stem cells have the remarkable potential to develop into many different cell types
in the body during early life and growth. In addition, in many tissues they serve as
a sort of internal repair system, dividing essentially without limit to replenish other
cells as long as the person or animal is stiH alive. When a stem cell divides, each
new cell has the potential either to remain a stem cell or become another type of cell
with a more specialized function, such as a muscle cell, a red blood cell, or a brain
ceU.

273セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:17:01
続き

Stem cells are distinguished from other cell types by two important characteristics.
First, they are unspeciaHzed cells capable of renewing themselves through cell
division, sometimes after long periods of inactivity. Second, under certain
physiologic or experimental conditions, they can be induced to become tissue- or
organ-specific cells with special functions. In some organs, such as the gut and bone
marrow, stem cells regularly divide to repair and replace worn out or damaged
tissues. In other organs, however, such as the pancreas and the heart, stem cells
only divide under special conditions.

274セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:17:44
続き

Until recently, scientists primarily worked with two kinds of stem cells from
animals and humans^ embryonic stem cells and non-embryonic "somatic" or "adult"
stem ceUs. The functions and characteristics of these ceUs will be explained in this
section. Scientists discovered ways to derive embryonic stem cells from early mouse
embryos nearly 30 years ago, in 1981. The detailed study of the biology of mouse
stem ceUs led to the discovery, in 1998, of a method to derive stem ceUs from human
embryos and grow the cells in the laboratory. These cells are called human
embryonic stem cells. The embryos used in these studies were created for
reproductive purposes through in vitro fertilization procedures. When they were no
longer needed for that purpose, they were donated for research with the informed
consent of the donor. In 2006, researchers made another breakthrough by
identifying conditions that would allow some specialized adult cells to be
reprogrammed genetically to assume a stem cell-like state. This new type of stem
cell, called induced pluripotent stem cells (iPSCs), will be discussed in a later part of
this section.

275セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:18:30
続き

Stem ceUs are important for hving organisms for many reasons. In the 3* to
5-day-old embryo, called a blastocyst, the inner cells give rise to the entire body of
the organism, including all of the many specialized cell types and organs such as the
heart, lung, skin, sperm, eggs and other tissues. In some adult tissues, such as bone
marrow, muscle, and brain, discrete populations of adult stem cells generate
replacements for cells that are lost through normal wear and tear, injury, or
disease.

276セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:19:05
続き

Given their unique regenerative abilities, stem cells offer new potentials for
treating diseases such as diabetes, and heart disease. However, much work remains
to be done in the laboratory and the clinic to understand how to use these cells for
cell-based therapies to treat disease, which is also referred to as regenerative or
reparative medicine.

277セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:19:54
続き

Laboratory studies of stem cells enable scientists to learn about the cells' essential
properties and what makes them different from specialized cell types. Scientists are
already using stem cells in the laboratory to screen new drugs and to develop model
systems to study normal growth and identify the causes of birth defects.
Research on stem cells continues to advance knowledge about how an organism
develops from a single cell and how healthy cells replace damaged cells in adult
organisms. Stem cell research is one of the most fascinating areas of contemporary
biology, but, as with many expanding fields of scientific inquiry, research on stem
cells raises scientific questions as rapidly as it generates new discoveries.

278セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:20:25
続き

• The unique properties of all stem cells
Stem cells differ from other kinds of cells in the body. All stem cells—^regardless of
their source—^have three general properties^ they are capable of dividing and
renewing themselves for long periods," they are unspecialized; and they can give rise
to specialized cell types.

279セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:20:57
続き

Stem cells are capable ofdividing and renewing themselves for longperiods. Unlike
muscle cells, blood cells, or nerve cells—^which do not normally replicate
themselves—stem cells may replicate many times, or proliferate. A starting
population of stem cells that proHferates for many months in the laboratory can
yield milHons of cells. If the resulting cells continue to be unspecialized, like the
parent stem cells, the cells are said to be capable of long-term self-renewal.
Scientists are trying to understand two fundamental properties of stem cells that
relate to their long-term self-renewal
why can embryonic stem cells proliferate for a year or more in the laboratory
without differentiating, but most non-embryonic stem cells cannot; and what are
the factors in hving organisms that normally regulate stem cell proHferation and
self-renewal?

280セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:21:27
続き

Discovering the answers to these questions may make it possible to understand how
cell proliferation is regulated during normal embryonic development or during the
abnormal cell division that leads to cancer. Such information would also enable
scientists to grow embryonic and non-embryonic stem cells more efficiently in the
laboratory.

281セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:22:32
続き

The specijSc factors and conditions that allow stem cells to remain unspeciaHzed are
of great interest to scientists. It has taken scientists many years of trial and error to
learn to derive and maintain stem cells in the laboratory without them
spontaneously differentiating into specific cell tj^es. For example, it took two
decades to learn how to grow human embryonic stem cells in the laboratory
following the development of conditions for growing mouse stem cells. Therefore,
understanding the signals in a mature organism that cause a stem cell population
to prohferate and remain unspecialized until the cells are needed. Such information
is critical for scientists to be able to grow large numbers of unspecialized stem cells
in the laboratory for further experimentation.

282セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:22:58
続き

Stem cells are unspecialized. One of the fundamental properties of a stem cell is
that it does not have any tissue-specific structures that allow it to perform
specialized functions. For example, a stem cell cannot work with its neighbors to
pump blood through the body (like a heart muscle cell), and it cannot carry oxygen
molecules through the bloodstream (like a red blood cell). However, unspecialized
stem ceUs can give rise to specialized cells, including heart muscle cells, blood cells,
or nerve cells.

283セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:23:26
続き

Stem cells can give rise to specialized cells. When unspecialized stem cells give rise
to specialized cells, the process is called differentiation. While differentiating, the
cell usually goes through several stages, becoming more specialized at each step.
Scientists are just beginning to understand the signals inside and outside cells that
trigger each stem of the differentiation process. The internal signals are controlled
by a cell's genes, which are interspersed across long strands of DNA, and carry
coded instructions for all cellular structures and functions. The external signals for
cell differentiation include chemicals secreted by other cells, physical contact with
neighboring cells, and certain molecules in the microenvironment. The interaction
of signals during differentiation causes the ceU's DNA to acquire epigenetic marks
that restrict DNA expression in the cell and can be passed on through cell division.

284セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:24:00
続き

Many questions about stem cell differentiation remain. For example, are the
internal and external signals for cell differentiation similar for all kinds of stem
cells? Can specific sets of signals be identified that promote differentiation into
specific cell types? Addressing these questions may lead scientists to find new ways
to control stem cell differentiation in the laboratory, thereby growing cells or tissues
that can be used for specific purposes such as cell-based therapies or drug
screening.

285セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:24:39
続き

Adult stem cells typically generate the cell types of the tissue in which they reside.
For example, a blood-forming adult stem cell in the bone marrow normally gives
rise to the many types of blood cells. It is generally accepted that a blood-forming
cell in the bone marrow—^which is called a hematopoietic stem cell—cannot give rise
to the cells of a very different tissue, such as nerve cells in the brain. Experiments
over the last several years have purported to show that stem cells from one tissue
may give rise to cell tj^es of a completely different tissue. This remains an area of
great debate within the research community. This controversy demonstrates the
challenges of studying adult stem cells and suggests that additional research using
adult stem cells is necessary to understand their full potential as future therapies.

286セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:27:58
続き

1.2 Adult stem cells
An adult stem cell is thought to be an undifferentiated cell, found among
differentiated cells in a tissue or organ that can renew itself and can differentiate to
yield some or all of the major specialized cell types of the tissue or organ. The
primary roles of adult stem cells in a hving organism are to maintain and repair the
tissue in which they are found. Scientists also use the term somatic stem cell
instead of adult stem cell, where somatic refers to cells of the body (not the germ
cells, sperm or eggs). Unlike embryonic stem cells, which are defined by their origin
(cells from the preimplantation-stage embryo), the origin ofadult stem cells in some
mature tissues is still under investigation.

287セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:29:26
続き

Research on adult stem cells has generated a great deal of excitement. Scientists
have found adult stem cells in many more tissues than they once thought possible.
This finding has led researchers and clinicians to ask whether adult stem cells could
be used for transplants. In fact, adult hematopoietic, or blood-forming, stem cells
from bone marrow have been used in transplants for 40 years. Scientists now have
evidence that stem cells

288セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:31:17
続き

exist in the brain and the heart. If the differentiation of
adult stem cells can be controlled in the laboratory, these cells may become the
basis of transplantation-based therapies.
• History of Adult stem cell research
The history of research on adult stem cells began about 50 years ago. In the 1950s,
researchers discovered that the bone marrow contains at least two kinds of stem
cells. One population, called hematopoietic stem cells, forms all the types of blood
cells in the body. A second population, called bone marrow stromal stem cells (also
called mesenchymal stem cells, or skeletal stem cells by some), were discovered a
few years later. These non-hematopoietic stem cells make up a small proportion of
the stromal cell population in the bone marrow, and can generate bone, cartilage,
fat, cells that support the formation of blood, and fibrous connective tissue.
In the 1960s, scientists who were studying rats discovered two regions of the brain
that contained dividing cells that ultimately become nerve cells. Despite these
reports, most scientists believed that the adult brain could not generate new nerve
cells. It was not until the 1990s that scientists agreed that the adult brain does
contain stem cells that are able to generate the brain's three major cell
types—astrocjrtes and oligodendrocytes, which are non-neuronal cells, and neurons,
or nerve cells.

289セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:32:23
続き

• Function of Adult stem cells
Adult stem cells have been identified in many organs and tissues, including brain,
bone marrow, peripheral blood, blood vessels, skeletal muscle, skin, teeth, heart,
gut, Hver, ovarian epithelium, and testis. They are thought to reside in a specific
area of each tissue (called a "stem cell niche"). In many tissues, current evidence
suggests that some types of stem cells are pericytes, cells that compose the
outermost layer of small blood vessels. Stem cells may remain quiescent
(non-dividing) for long periods of time until they are activated by a normal need for
more cells to maintain tissues, or by disease or tissue injury.
Typically, there is a very small number of stem cells in each tissue, and once
removed from the body, their capacity to divide is limited, making generation of
large quantities of stem cells difficult. Scientists in many laboratories are trying to
find better ways to grow large quantities of adult stem cells in cell culture and to
manipulate them to generate specific cell types so they can be used to treat injury or
disease. Some examples of potential treatments include regenerating bone using
cells derived from bone marrow stroma, developing insulin-producing cells for
type 1 diabetes, and repairing damaged heart muscle following a heart attack with
cardiac muscle cells.

290セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:33:10
続き

1.3 Research methods for identifying adult stem cells
Scientists often use one or more of the following methods to identify adult stem
cells: (i) label the cells in a living tissue with molecular markers and then
determine the speciaHzed cell types they generate; (2) remove the cells from a living
animal, label them in cell culture, and transplant them back into another animal to
determine whether the cells replace (or "repopulate") their tissue of origin.
Importantly, it must be demonstrated that a single adult stem cell can generate a
line of genetically identical cells that then gives rise to all the appropriate
differentiated cell tj^es of the tissue. To confirm experimentally that a putative
adult stem cell is indeed a stem cell, scientists tend to show either that the cell can
give rise to these genetically identical cells in culture, and/or that a purified
population of these candidate stem cells can repopulate or reform the tissue after
transplant into an animal.
As indicated above, scientists have reported that adult stem cells occur in many
tissues and that they enter normal differentiation pathways to form the specialized
cell types of the tissue in which they reside.

291セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:34:28
続き

• Normal differentiation pathways of adult stem cells.
In a living animal, adult stem cells are available to divide, when needed, and can
give rise to mature ceU types that have characteristic shapes and specialized
structures and functions of a particular tissue. Hematopoietic stem cells give rise to
all the types of blood cells' red blood cells, B lymphocytes, T lymphocytes, natural
killer cells, neutrophils, basophils, eosinophils, monocytes, and macrophages.
Mesenchymal stem cells give rise to a variety of cell types' bone cells (osteocytes),
cartilage cells (chondrocytes), fat cells (adipocytes), and other kinds of connective
tissue cells such as those in tendons.
Neural stem cells in the brain give rise to its three major cell types- nerve cells
(neurons) and two categories of non-neuronal cells—astrocytes and
oligodendrocytes.
Epithelial stem cells in the hning of the digestive tract occur in deep crypts and give
rise to several ceD types: absorptive cells, goblet cells, paneth cells, and
enteroendocrine cells.
Skin stem cells occur in the basal layer of the epidermis and at the base of hair
follicles. The epidermal stem cells give rise to keratinocytes, which migrate to the
surface of the skin and form a protective layer. The follicular stem cells can give rise
to both the hair follicle and to the epidermis.

292セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:35:36
続き

• Transdifferentiation.
A number of experiments have reported that certain adult stem cell t5^es can
differentiate into cell t5TDes seen in organs or tissues other than those expected from
the cells' predicted lineage (i.e., brain stem cells that differentiate into blood cells or
blood-forming cells that differentiate into cardiac muscle cells, and so forth). This
reported phenomenon is called transdifferentiation.
Although isolated instances of transdifferentiation have been observed in some
vertebrate species, whether this phenomenon actually occurs in humans is under
debate by the scientific community. Instead of transdifferentiation, the observed
instances may involve fusion of a donor cell with a recipient cell. Another possibility
is that transplanted stem cells are secreting factors that encourage the recipient's
own stem cells to begin the repair process. Even when transdifferentiation has been
detected, only a very small percentage of cells undergo the process.

293セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:36:31
続き

In a variation of transdifferentiation experiments, scientists have recently
demonstrated that certain adult cell t5T)es can be "reprogrammed" into other ceU
tjT^es in vivo using a weU-controUed process of genetic modification (see Section VI
for a discussion of the principles of reprogramming). This strategy may offer a way
to reprogram available cells into other cell types that have been lost or damaged due
to disease. For example, one recent experiment shows how pancreatic beta cells, the
insulin-producing ceUs that are lost or damaged in diabetes, could possibly be
created by reprogramming other pancreatic ceUs. By "re-starting" expression of
three critical beta-cell genes in differentiated adult pancreatic exocrine cells,
researchers were able to create beta ceU-like cells that can secrete insulin. The
reprogrammed cells were similar to beta cells in appearance, size, and shape;
expressed genes characteristic of beta cells." and were able to partially restore blood
sugar regulation in mice whose own beta cells had been chemically destroyed. While
not transdifferentiation by definition, this method for reprogramming adult cells
may be used as a model for directly reprogramming other adult cell types.
In addition to reprogramming ceils to become a specific ceD type, it is now possible
to reprogram adult somatic cells to become like embryonic stem cells (induced
pluripotent stem cells, iPSCs) through the introduction of embryonic genes. Thus, a
source of cells can be generated that are specific to the donor, thereby avoiding
issues of histocompatibility, if such cells were to be used for tissue regeneration.
However, like embryonic stem cells, determination of the methods by which iPSCs
can be completely and reproducibly committed to appropriate cell Hneages is still
under investigation

294セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:38:08
続き

1.4 Pluripotent stem cells
• The similarities and differences between embryonic and adult stem cells
Human embryonic and adult stem cells each have advantages and disadvantages
regarding potential use for cell-based regenerative therapies. One major difference
between adult and embryonic stem cells is their different abilities in the number
and type of differentiated ceU types they can become. Embryonic stem cells can
become all cell types of the body because they are pluripotent. Adult stem cells are
thought to be limited to differentiating into different cell types of their tissue of
origin.
Embryonic stem cells can be grown relatively easily in culture. Adult stem cells are
rare in mature tissues, so isolating these cells from an adult tissue is challenging,
and methods to expand their numbers in cell culture have not yet been worked out.
This is an important distinction, as large numbers of cells are needed for stem cell
replacement therapies.
Scientists believe that tissues derived from embryonic and adult stem cells may
differ in the likeHhood of being rejected after transplantation. We don't yet know
whether tissues derived from embryonic stem cells would cause transplant rejection,
since the first phase 1 cHnical trial testing the safety of cells derived from hESCS
has only recently been approved by the United States Food and Drug
Administration (FDA).

295セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:39:00
続き

Adult stem cells, and tissues derived from them, are currently believed less likely to
initiate rejection after transplantation. This is because a patient's own cells could be
expanded in culture, coaxed into assuming a specific cell tj^e (differentiation), and
then reintroduced into the patient. The use of adult stem cells and tissues derived
from the patient's own adult stem cells would mean that the cells are less lilcely to
be rejected by the immune system. This represents a significant advantage, as
immune rejection can be circumvented only by continuous administration of
immunosuppressive drugs, and the drugs themselves may cause deleterious side
effects
• Embryonic stem cells
A. What stages of early embryonic development are important for generating
embryonic stem cells?
Embryonic stem cells, as their name suggests, are derived from embryos. Most
embryonic stem cells are derived from embryos that develop from eggs that have
been fertilized in \dtro—^in an in vitro fertilization clinic—and then donated for
research purposes with informed consent of the donors. They are not derived from
eggs fertilized in a woman's body.

296セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:39:56
続き

A. Establish of embryonic stem cells grown in the laboratory
Growing cells in the laboratory is known as cell culture. Human embryonic stem
cells (hESCs) are generated by transferring cells from a preimplantation-stage
embryo into a plastic laboratory cultm'e dish that contains a nutrient broth known
as culture medium. The cells divide and spread over the surface of the dish. The
inner surface of the culture dish is typically coated with mouse embryonic skin cells
that have been treated so they will not di\dde. This coating layer of cells is called a
feeder layer. The mouse cells in the bottom of the culture dish provide the cells a
sticky surface to which they can attach. Also, the feeder cells release nutrients into
the culture medium. Researchers have devised ways to grow embryonic stem cells
without mouse feeder cells. This is a significant scientific advance because of the
risk that viruses or other macromolecules in the mouse cells may be transmitted to
the human cells.
The process of generating an embryonic stem cell line is somewhat inefficient, so
Hnes are not produced each time cells from the preimplantation-stage embryo are
placed into a culture dish. However, if the plated cells survive, divide and multiply
enough to crowd the dish, they are removed gently and plated into several fresh
culture dishes. The process of re-plating or subculturing the cells is repeated many
times and for many months. Each cycle of subculturing the cells is referred to as a
passage. Once the cell line is estabhshed, the original cells yield millions of
embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for
a prolonged period of time without differentiating, are pluripotent, and have not
developed genetic abnormalities are referred to as an embryonic stem cell line. At
any stage in the process, batches of cells can be frozen and shipped to other
laboratories for further culture and experimentation.

297セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:40:47
続き

B. Tests for identifying embryonic stem cells
At various points during the process of generating embryonic stem cell lines,
scientists test the cells to see whether they exhibit the fundamental properties that
make them embryonic stem cells. This process is called characterization.
Scientists who study human embryonic stem cells have not yet agreed on a
standard battery of tests that measure the cells' fundamental properties. However,
laboratories that grow human embryonic stem cell lines use several kinds of tests,
including-
Growing and subculturing the stem cells for many months. This ensures that the
cells are capable of long-term growth and self-renewal. Scientists inspect the
cultures through a microscope to see that the cells look healthy and remain
undifferentiated.
Using specific techniques to determine the presence of transcription factors that are
typically produced by undifferentiated cells. Two of the most important
transcription factors are Nanog and Oct4. Transcription factors help turn genes on
and off at the right time, which is an important part of the processes of cell
differentiation and embryonic development. In this case, both Oct 4 and Nanog are
associated with maintaining the stem cells in an undifferentiated state, capable of
self-renewal.

298セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:41:39
続き

Using specific techniques to determine the presence of paricular cell surface
markers that are typically produced by undifferentiated cells.
Examining the chromosomes under a microscope. This is a method to assess
whether the chromosomes are damaged or if the number of chromosomes has
changed. It does not detect genetic mutations in the cells.
Determining whether the cells can be re-grown, or subcultured, after freezing,
thawing, and re-plating.
Testing whether the human embryonic stem cells are pluripotent by l) allowing the
cells to differentiate spontaneously in cell culture.' 2) manipulating the cells so they
will differentiate to form cells characteristic of the three germ layers; or 3) injecting
the cells into a mouse with a suppressed immune system to test for the formation of
a benign tumor called a teratoma. Since the mouse's immune system is suppressed,
the injected human stem cells are not rejected by the mouse immune system and
scientists can observe growth and differentiation of the human stem cells.
Teratomas t5T)ically contain a mixture of many differentiated or partly
differentiated cell types—an indication that the embryonic stem cells are capable of
differentiating into multiple cell types. As long as the embryonic stem cells in
culture are grown under appropriate conditions, they can remain undifferentiated
(unspecialized). But if cells are allowed to clump together to form embryoid bodies,
they begin to differentiate spontaneously. They can form muscle cells, nerve cells,
and many other cell tjTpes. Although spontaneous differentiation is a good
indication that a culture of embryonic stem cells is healthy, it is not an efficient way
to produce cultures of specific cell types.

299セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:42:23
続き

So, to generate cultures of specific types of differentiated cells—^heart muscle cells,
blood cells, or nerve cells, for example—scientists try to control the differentiation of
embryonic stem cells. They change the chemical composition of the culture medium,
alter the surface of the culture dish, or modify the cells by inserting specific genes.
Through years of experimentation, scientists have established some basic protocols
or "recipes" for the directed differentiation of embryonic stem cells into some specific
cell types.
If scientists can reliably direct the differentiation of embryonic stem cells into
specific cell types, they may be able to use the resulting, differentiated cells to treat
certain diseases in the future. Diseases that might be treated by transplanting cells
generated from human embryonic stem cells include Parkinson's disease, diabetes,
traumatic spinal cord injury, Duchenne's muscular dystrophy, heart disease, and
vision and hearing loss.

300セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:43:09
続き

• Induced pluripotent stem ceUs
Induced pluripotent stem cells (iPSCs) are adult ceUs that have been genetically
reprogrammed to an embryonic stem cell-like state by being forced to express genes
and factors important for maintaining the defining properties of embryonic stem
cells. Although these cells meet the defining criteria for pluripotent stem cells, it is
not known if iPSCs and embryonic stem cells differ in clinically significant ways.
Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in
late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem
cells, including expressing stem cell markers, forming tumors containing cells from
all three germ layers, and being able to contribute to many different tissues when
injected into mouse embryos at a very early stage in development. Human iPSCs
also express stem cell markers and are capable of generating cells characteristic of
all three germ layers.
Although additional research is needed, iPSCs are already useful tools for drug
development and modeHng of diseases, and scientists hope to use them in
transplantation medicine. Viruses are currently used to introduce the
reprogramming factors into adult cells, and this process must be carefully
controlled and tested before the technique can lead to useful treatments for humans.
In animal studies, the virus used to introduce the stem cell factors sometimes
causes cancers. Researchers are currently investigating non-viral delivery
strategies. In any case, this breakthrough discovery has created a powerful new way
to "de-differentiate" cells whose developmental fates had been previously assumed
to be determined. In addition, tissues derived from iPSCs wiU be a nearly identical
match to the ceU donor and thus probably avoid rejection by the immune system.
The iPSC strategy creates pluripotent stem cells that, together with studies of other
types of pluripotent stem cells, will help researchers learn how to reprogram cells to
repair damaged tissues in the human body.

301セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:44:40
続き

1.5 Possibility of existence of adult pluripotent stem cells
Many important questions about adult stem cells remain to be answered. They
include:
How many kinds of adult stem cells

302セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:45:12
続き

exist, and in whichtissues do they exist?
How do adult stem cells evolve during development and how are they maintained in
the adult? Are they "leftover" embrj'^onic stem cells, or do they arise in some other
way?
As described above, stem cells were discovered by studies of development. In
development, germ-layer differentiation is a critical point. All adult stem cells
discovered until today are known to be generated after germ-layer differentiation.
By this reason, adult stem cells cannot differentiate crossing germ layers.
Whereas, some scientists suggested that "left over" embryonic cells still reside in
adult body.
For example, MAPC, spore-like stem cells, MIAMI cells, VSESC and MUSE ceUs.
They suggest those theories because some phenomena can not be explained by
knowledge from development study. Adult stem cells have generally been felt to be
Hmited to multipotency and unable to cross germ layer lineages as they develop.
However, first, a part of mesenchymal stem ceUs were derived firom ectoderm not
mesoderm. Second, a part of mesenchymal stem cells can differentiate into cells
derived firom ectoderm. Thus, some of adult stem cells cross the germ layers. If the
origin of germ layer is critical for determining stem cells' fate, these phenomena can
not be explained. This is the reason why researchers suggest that "left over"
embryonic cells still reside in adult body.

303セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:51:35
続き

Especially spore-like stem cell research suggested a very unique theory.
• Spore-like stem cells (Figure 2)
While the existence of adult stem cells has been reported for more than a decade,
our research team has advanced the theory that common adult stem cells reside in
all body tissues, they possess small figure and stress-tolerant property. These cells
were named spore-like stem cells.
1.6 Hypothesis of this research
• Sphere formation
Sphere formation is recognizes as one of isolation method of adult stem cells.
Because, stem cells should hold a strong proliferative potential and self-renewal
potency, sphere formation is recognized as a result of those potencies.
Interestingly, as presented by neurospheres, some sphere forming stem cells show
gene expression over lapping with ES cells.
• Immature adult stem ceUs
If stem cells which can cross the germ layer lineages

304セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:54:17
続き

exist in adult body, we assume
that they should be very distinct from ES ceUs because ES cells were not native cells
.

305セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:54:48
続き

existing in native organisms. ES cells are artificial.

• Hypothesis
Considering all the various factors together.
1. Adult stem cells stem which can cross germ layers (very
immature adult stem cells) may exist.
2. They are very small, and stress-tolerant
3. They form spheres
In this study, we characterized cells isolated from three adult tissues (lung, muscle
and spinal cord) representative of the three different germ layers (endoderm,
mesoderm and ectoderm) and from bone marrow. The cells were triturated to break
mature cells and propagated as non-adherent clusters or spheres in a serum-free
culture medium. We found that cells from each source, initially expressed many of
the markers associated with ESCs and demonstrated differentiation potential into
all three germ layers at a time that neural Hneage markers had not yet been
expressed. Ultimately cells from each tissue, differentiated into cells representative
of all three germ layers in \itro. The isolation initially contained a significant
amount of floating debris, non-adherent cells, insoluble proteins or fibers, and other
extraneous materials, all of which appeared to participate in the formation of
non-adherent spherical clusters that contained the cells. The cellular make-up of
individual spheres was not identical; that is, spheres were composed of
heterogeneous populations of cells, even when the spheres were generated from
cells procured fi'om the same tissue at the same time. Similarities or differences
seen in the cell content of different spheres, were believed to be secondary to the
environment in which they were cultured.

306セント・パンテレイモン・ふふふ三世:2014/12/24(水) 11:55:26
以上、バックグラウンド終り。

307名無しさん:2014/12/24(水) 11:56:12
長えよう!

308名無しさん:2014/12/24(水) 11:59:14
すまんすまん。こんなに長いとは思わなかった。一気にスペース
消耗しちまったな。でも、このコピペは小保方が留学初期に
読んでこの世界に引きずり込まれた文章なんじゃないかなあと
ちょっと前から引っかかってたんだけどな。

309セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:40:10
じゃあ、11次元が引っ張ってきた第2章な。

2. 小細胞の単離

2.1 導入

2.1.1 幹細胞と小細胞
一般的に言えば、幹細胞は小さい。細胞質と核の割合は幹細胞の顕著な指標の一つである。しかし、小細胞だけの単離方法はもう確立されている。
2.1.2 幹細胞とスフィア形成
幹細胞が強い増殖能力および自己再生能力を持っていることが認識されて以来、スフィア形成は幹細胞特性の結果の一つとして認識されている。最近では多くの報告が、様々な成体組織がスフィア形成細胞を含むことを示している。網膜、脳、角膜、嗅覚神経上皮、膵臓、皮膚、筋肉および骨髄を含む多くの成人組織に由来する細胞が、胚性幹(ES)細胞がそうであるように、非付着性のクラスタ又はスフィアとして増殖されてきた。

310セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:40:52
これらのレポートに記載されているスフィアに含まれる細胞は神経系統マーカーを発現し、幹細胞能力の様々な程度を保有するように見える。我々は様々な報告書に記載された成体幹細胞は発達の異なる段階での効力の異なる程度を表現する同一の成体幹細胞を表すと考えている。スフィア形成細胞は前もって予想されていたよりもはるかに未成熟です。我々は内胚葉、中胚葉または外胚葉からのどんな組織から獲得された大人の幹細胞でも、適切な環境下で維持するとき、広い多能性と混在した胚葉を示すことができるのではという仮説を立てた。そこで我々はまず小細胞を単離する方法を検討した。そして次に無血清状態でスフィア形成能があるかどうか調べた。

311セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:41:27
2.2 実験

2.2.1 小細胞の単離
以下に述べているように骨髄、肺、筋肉および脊髄組織は3〜4週齢のC57BL / 6Jマウスから入手した。骨髄はインスリン注射器を用いて培養液で大腿骨と脛骨を洗い出すことによって取得した。細胞は1×10^細胞/ cmで、2%B27、20ng/ mlのbFGF及び10ng/ mlのEGFを補充したF12/ DMEM(1:1、v / v)に播種した。
げっ歯類骨髄の小細胞を単離するために、以下の3種類の方法が試された。

A. 細胞ソーター
前方散乱はサイズ定義された水滴により調整された。直径8マイクロメートル未満の細胞が単離された。

B. 浸透圧
骨髄細胞は成熟細胞を破壊するために低浸透圧液体に曝された。

C. 細ガラスピペットを使用しての粉砕
標準ガラスピペットは細い先端を作るために焼かれて伸ばされた。成熟細胞は細ガラスピペットを何度も通され機械的ストレスによって破壊された。得られた小さな細胞は、無血清培地で培養し、スフィアが幹細胞の数としてカウントされた。

312セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:41:59
2.2.2 小細胞の性格付け
免疫組織化学。タンパク質発現は下記に記された免疫組織化学法を用いて評価された。各ガラススライドはanti-c-kit rat monoclonal 抗体, anti-Sca-1 rat monoclonal 抗体または、 anti-E-cadherin rat monoclonal 抗体によって培養された。 PBSで洗浄後、細胞は goat anti-rat IgG Texas Red-conjugated 抗体と goat anti-rat IgG Fluorescein-conjugated 抗体で培養された。ES細胞検出キットを用いてSSEA-1およびアルカリホスファターゼ(AP)染色が行なわれた。
単体スフィァのリアルタイムポリメナール連鎖反応(PT-PCR)。単体スフィアが個別に顕微鏡下に集められた。総RNAが各単体スフィアから抽出され、次にオリゴdTプライミング逆転写(RT)が行なわれた。 RT-PCRは35サイクルのiCycler上のTaqDNAポリメラーゼを用いて行われた。

313セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:42:40
2.3 結果
2.3.1単離された細胞からのスフィア形成
粉砕と浸透圧が球を生産した。一方、セルソーターはスフィアを生産しなかった。粉砕が最も多くスフィアを生産した。そこで我々は粉砕法を小細胞の単離方法として採用した。

2.3.2 粉砕法の効果
粉砕した後、小細胞集団は、天然の骨髄細胞と比較して増加した(図3AおよびB)。しかし細胞の直径が8マイクロメーター以上の全ての細胞が消えたわけではない。粉砕された細胞は培養中にスフィァを形成した。、、、ネイティブ骨髄細胞(図3AおよびB)。しかし細胞の8マイクロ以上の全ての細胞が、、、興味深いことに、スフィアは小細胞だけでできている(図3C)。したがって粉砕法が小細胞のみを培養、成長させることができると示された。

314名無しさん:2014/12/24(水) 12:47:57
小保方が寝ぼけていてoptimisticとosmotic をズット取り違えたままの
箇所だね。この取り違えに関する早稲田の解釈も笑わせるね。optimisticが
楽観的という意味を知らない人居ないし、本人が浸透圧の
話しているのにosmoticという言葉を知らないなんてありえないよね。
疲労からの取り違えに決まってるところを自分たちが見てない負い目が
あるもんだからわけの分からん解釈してる。

315名無しさん:2014/12/24(水) 12:50:27
さっきあげた目次からしても第2章がこれだけというのは下書き段階の
草稿だということは間違いないね。目次の2章は2.6まであるし内容も
一致してない。

316セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:51:34
じゃ、次は第3章だ。

3.1 導入
3.1.1 幹細胞の分化能
幹細胞の定義の一つは多分化能である。それらの幹細胞性の程度もまたそれらの分化能によって決定される。第2節の結果によると、球体形成細胞は多能性細胞マーカーを発現した。したがってこの節では、我々は生体内および試験管内での分化能を確認することを目的とした。

3.2 実験
3.2.1 試験管内分化検査
試験管内分化検証は次の公表されているげっ歯類ES細胞用分化培養条件で調べられた。中胚葉系統分化検査。解離された筋細胞は anti-αmooth muscle actin 抗体、anti-Myosin 抗体 及び anti-Desmin 抗体で染色された。軟骨細胞はSafranin-0および Fast Greenで染色された。骨細胞はALIZARIN RED Sで染色された。21日後に脂肪細胞をOil Re 0で染色した。

317セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:52:12
外胚葉系統(神経系統)分化検査。細胞はortininコーティングされたチャンバースライド上に播種され、anti-βIII Tubuin mouse monoclonal、anti-O4 mouse monoclonal antibody及びanti-GFAP mouse monoclonal antibodyで培養された。
内胚葉系統(肝)分化検査。分化した細胞はanti-αfetoprotein mouse monoclonal antibody、anti-Albumin goat polyclonal antibody及びanti-Cytokeratin 18 mouse monoclonal antibodyを使った免疫組織化学によって検出された。免疫組織化学の結果はRT-PCRによって確認された。

318セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:52:59
3.2.2 生体内分化
スフィアは生分解性培地上に播種し、NOD / SCIDマウス<超免疫不全マウス> (Charles River laboratories社)の皮下に移植した。 6週間後、移植片を採取し、10%ホルムアルデヒドで固定した後に免疫細胞化学によって調べられた。

3.3 結果
3.3.1 試験管内での分化能
代表的な骨髄由来のスフィアを単一細胞に解離し、三つの異なる分化培地に移植したとき、細胞は、Map2(外胚葉)、MyoD(中胚葉)及びα-フェトプロテイン(AFP、内胚葉)の三系統の特定の遺伝子を発現して分化した(図10)。骨髄スフィアからの細胞の試験管内環境への神経分化溶剤の添加は、pIIIのチューブリン(ニューロンのマーカー)の発現をもたらした(図11)。

319セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:53:31
代わりに、媒体に20%のウシ胎児血清を添加すると、中胚葉を代表するマーカーの発現を生じた。即ち平滑筋アクチン(図11)更には間葉系細胞、軟骨細胞、骨細胞及び脂肪細胞である(図12)。このように、スフィアからの細胞は神経(ニューロン、オリゴデンドロサイトおよび膠細胞)と間葉系幹細胞系譜(軟骨細胞、骨細胞及び脂肪細胞)の全ての細胞型に分化した。肝細胞分化培地にさらすと、内胚葉組織への分化を示唆するaフェトプロテインの発現(図11)が見られた。

3.3.2 生体内分化能
骨髄のスフィア及びES細胞が、それらの腫瘍形成能力を調べるために、免疫欠損マウスに皮下移植された。その結果、6週間後にES細胞は腫瘍を形成した。我々はスフィア細胞の増殖能がES細胞よりもはるかに弱かったと結論付けた(図13)。
次に我々は移植された細胞が移植後に生体内で分化するかどうかを調査した。移植された細胞は6週間後に回収され、免疫組織化学的分析に供された。免疫組織化学的分析の結果によると、スフィアは生体内で三胚葉に由来した組織に分化した(図14)。

320セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:54:23
3.4 第三節のまとめ
生体内および試験管内でのすべて三胚葉由来細胞に分化するスフィア


3.5 検討
スフィアは試験管内で三胚葉に由来する細胞に分化した。それは分化または分化転換<すでに分化した細胞が別の細胞種に転換する現象>のいずれかであると分かっている。また間葉系幹細胞の試験管内分化能との違いに言及することは困難である。
しかし、少なくともスファー形成細胞はさまざまな成熟した細胞の生成を可能にした。加えて、生体内分化検査はスフィア形成細胞が実際に幹細胞であることを証明したが、増殖能力においてES細胞と峻別された。増殖能と分化能との関係はもう理解されてきている。この研究におけるスフィアは間葉系幹細胞と神経幹細胞の両方の基準を満たす分化能を示した。私たちは研究しているスフィアに間葉系と神経系の両方の幹細胞系統への前駆細胞が含まれていると信じている。

321セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:55:19
上述の細胞が非接着性スフィアとして知られ、かつ生体内に存在することが知られていないことに留意することが重要である。スフィアにおける細胞の試験管内での挙動は生体内に存在する細胞とは非常に異なる可能性が高い。如何にこれらの幹細胞は成体の中にとどまり、そして如何に彼らの潜在能力を伸ばすのか。
生成されたスフィアは、細胞の不均一な集団で構成されているようだった。同じ組織から単離された細胞から生成されていながら、同時に、いくつかのスフィアにはいくつかのマーカー発現が伴い、別のスフィアには他のマーカー発現があった。我々は、これらの違いはその中で細胞が維持されている環境の関係かなと考えている。

322セント・パンテレイモン・ふふふ三世:2014/12/24(水) 12:56:15
以上、図とその解説は省略。

323名無しさん:2014/12/24(水) 13:01:44
日本語概要の最終章に「本研究で得られた幹細胞が実際に生体内に
存在するかどうかは、これから明確にすべき大きな課題である。
しかしながら培養法をさらに効率化することによって大量培養を可能とし、
組織工学をはじめとする再生医療研究の新たな細胞ソースとして期待できる。」
という部分はいろんな意味でくびを傾げさせるね。

324名無しさん:2014/12/24(水) 13:04:48
ディシュー論文以来実際に成体から取り出して、いろんな組織に
変化させてるじゃないかという意味でしょ。
ここでは既にこの細胞が散在していたのではなくて体細胞に
ストレスを与えることによって創られて着ているのかも知れないと
後のstapを予言してるんでしょ。

325名無しさん:2014/12/24(水) 13:10:37
このときはまだ小保方は東京女子医大にいるよね。ここでバカンティラボに
居たとき以来のいろんな実験の続きをやっている。ここで二つの可能性があるのよね。
つまり結果は出てないのに出ているようにデータや論文記述を意図的にねつ造している
という可能性と、ここまでは間違いや解釈違いはありえてもやっていることは
すべてが真実であるという可能性。

326名無しさん:2014/12/24(水) 13:13:46
論文の引用マナー違反はかなりあるし、画像の修正や他文献からの
盗用もかなりあるが博論は原稿なので仮処置の可能性がある。

327名無しさん:2014/12/24(水) 13:15:13
普通はここでアウトよね。ちゃんと見て判断したら審査は落第よね。
そうなっていたらこんな悲劇はなかった。

328名無しさん:2014/12/24(水) 13:17:03
この程度のことは通常なんじゃないかな。今回いろんなところから
論文不正が暴露されたねえ。なんか通奏低音が常時鳴り渡っている感じよね。

329名無しさん:2014/12/24(水) 13:30:47
日本の博士号って一般的レベルはこの程度じゃないの。無論昔から
延々と一部の優れた知性の伝統はあるよね。これがないと国がもたない。
でも人数増やせば裾野のレベルは落ちるに決まってる。まあ、英語に
不自由がなければいいかという程度の審査じゃないかというのは明治以降の
日本の知識人の大半がただの英語使い、欧州語使いという程度なのは
知られていて、要するに産業革命以降の西洋知識の紹介屋さんなんだよね。

330名無しさん:2014/12/24(水) 13:33:27
製薬会社の宣伝や効能書きのためにある特定の場所から博士が量産されたのが
最初のレベル低下原因で、次に文科省の博士の絶対数増大方針よね。

331名無しさん:2014/12/24(水) 13:35:15
でも一応小保方さんのティシュー論文はとりあえず博士資格認定レベルだったわけだ。

332名無しさん:2014/12/24(水) 13:36:29
早稲田と東京女子医大であの論文誰が読んだかな。
査読通っているからokだったとか。

333名無しさん:2014/12/24(水) 13:39:48
一応大和なんかもあちこちの海外公演に連れて回ってるし、まあいいでしょう
という程度の判断じゃないの?論文の内容にまで深々と入り込んでるかなあ。
プレゼンはうまかったというからな。

334名無しさん:2014/12/24(水) 13:40:35
誰も実験の内容に関知してないのね。

335名無しさん:2014/12/24(水) 13:41:12
どうも、そんな感じがしないか。

336名無しさん:2014/12/24(水) 13:42:09
スフィアだけは造ってるのよね。その正体が何であれ。

337名無しさん:2014/12/24(水) 13:43:14
そもそも細胞がなければ若山のところに持っていけない。

338名無しさん:2014/12/24(水) 13:44:26
若山はその細胞が博論のための実験だと知っていたのかな。

339名無しさん:2014/12/24(水) 13:48:38
それは明確ではないね。後に早稲田の調査があって、それが博論のための
実験だと知ったことは間違いない。ただ、小保方は最初細胞を持って、
小島と大和と一緒に理研を訪問している。そのときは、博論のためというより
バカンティの仮説証明のためという目的の方が大きかったのではないかな。
だからこそ小島が来た。

340名無しさん:2014/12/24(水) 13:51:33
そうなら博論のためとは思っていなかったかも知れないね。
でも小保方が何回か細胞をもってキメラ作成を依頼して若山の
送り返したマウスの中にうっすらと黒い体毛があるのが見えて
剃毛したら肌が黒かった。これがキメラ第一号なのよね。
何の細胞かは知らないが出来てるよね。

341名無しさん:2014/12/24(水) 13:55:07
小保方の嘘なのか、esのねつ造細胞なのかは知らないが、小保方は
それを若山にメールで報告していて、若山がその無論日付つきのメールを
早稲田に転送して、小保方の実験はエア実験ではないと証明されて
調査委員会は実体のあるものと判断した。

342名無しさん:2014/12/24(水) 13:56:14
しかし、若山は小保方の報告を信じていなかったのであろうか?

343名無しさん:2014/12/24(水) 14:00:08
信じないのに小保方を理研の自分の研究室に雇うということはありえない。
自分は確かに小保方に頼まれてキメラを作成したから小保方さんの実験は
エア実験ではありませんと証明した人が、どうしていや、キメラは出来てないに
違いないと思っているなんてことがありますか。なんでそんな嘘つきと
思っている人を雇うの。

344名無しさん:2014/12/24(水) 14:01:54
もし嘘つきとわかっていて雇ったのならなんらかの下心があるのかな。

345名無しさん:2014/12/24(水) 14:03:44
>>343

若山は雇ってないけどね。
若山研時代の小保方は客員研究員で、ハーバード大に所属していた単なる共同研究者。
理研は金を出していない。
2013年3月1日付けで、若山研とは別のユニットリーダーとして理研に雇われたので、若山は一度も小保方を雇っていない。

346名無しさん:2014/12/24(水) 14:03:59
もし信じていて雇ったのなら既にこのときに騙されている可能性があるよね。
われわれは既に再現検証実験でとりあえず何もできなかったことを知ってる。

347名無しさん:2014/12/24(水) 14:06:39
>>345

客員を受け入れるのには許可が要るのよ。若山の申請で当時の西川副所長が
認可した。ハーバード側からの依頼よ。無給研究員。

348名無しさん:2014/12/24(水) 14:08:56
もうひとつの可能性は既にこの博論のキメラ段階から若山が小保方に知らせずに
捏造してないかという問題。

349名無しさん:2014/12/24(水) 14:09:45
なんのために?

350名無しさん:2014/12/24(水) 14:12:40
当然だが、若山は大和、小島、小保方の3人が理研を訪ねてくるまで
小保方を知らなかった。そこで初めて小保方が何をしようとしているのかを
聞かされている。そして若山のキメラ作成技術を請われたわけよね。
小保方が捏造犯かもしれないというようなことは全く知らない。

351名無しさん:2014/12/24(水) 14:15:08
それはそうでしょう。そこは分かる。でもなんのために
小保方のねつ造キメラを作ってやる義理があるのよ。
自分の名声も捨てて?

352名無しさん:2014/12/24(水) 14:20:20
その後に何回か尋ねてきたがキメラはできなかった。自己調査委員会でも
そういう調査になってるが、先に述べたように若山さんはキメラを作ってるのよ。
ただそれが本当かどうかは別問題だけど、小保方から出来てたという報告を
貰ったということを早稲田の調査チームにメールの証拠をつけて渡している。
したがって理研の自己調査委員会の調査はそこに及んでなかったんだろうね。
ウィキの情報も多分ソースが同じなのよ。早稲田の報告は遅れて出たからね。

353名無しさん:2014/12/24(水) 14:21:43
しかし、それにしても、動機がないね。

354名無しさん:2014/12/24(水) 14:27:33
まず普通の人が考えて成立しうるような動機って男女関係以外には
思い当たるのが難しいだろうね。無論、あり得るとしたらだよ。
正常な判断力を狂わせるような原因って他には考えられない。
リスクが高すぎる。たかが赤の他人でちょと紹介された院生にそんなことを
してやる動機はないのが普通よ。
だから、唯一の原因もなかったとしたら、若山さんは逆に、どうして
そんなできてもないキメラをできたという彼女を引き受けたのかということになってしまう。
それもないなら、それは出来たことを信じていた途謂うことになるでしょう。
これが一番納得しやすい。途謂うことはもうここで騙されてるということよ。

355名無しさん:2014/12/24(水) 14:28:45
キメラができる細胞ってesだよね。

356名無しさん:2014/12/24(水) 14:29:48
既にもう、一度esで騙されてるのよ。この人は。

357名無しさん:2014/12/24(水) 14:31:57
若山さんってキメラができるということの意味をわかってないのかなあ。
大事件でしょ。メールを受け取って本物かどうかを一度も確認してないのね。

358名無しさん:2014/12/24(水) 14:33:21
だってstapでキメラ作って胎盤の切片写真を確認しなかった人なのよ。

359名無しさん:2014/12/24(水) 14:34:21
若山さんにいつまでも嫌疑がかかるのって若山さん自身にも遠因があるのね。

360名無しさん:2014/12/24(水) 14:38:22
その遠因にバカンティ側からの守秘要請があるのではないかね。
口を挟むのを意図的にやめてるのではないかね。自分でも
そういうこと言ってたでしょ。
今回の再現検証でとりあえず出来たものをインジェクトしてみたけど
何もできなかった。その結論が正しいなら、2011年の11月に
キメラができたはずもなく、更に博論のキメラも出来たはずはないのよ。

361名無しさん:2014/12/24(水) 21:13:55
やっぱり、STAPはあるんじゃないか。
若山は、FI-SC樹立、そこからキメラ作成。
小保方は、再現不調に終わらされただけ。
残っているサンプルは、公正に調べなければ。

362名無しさん:2014/12/25(木) 02:05:19
もう、STAP細胞生成器を作るしかないな。
心身のダメージも関係ない。
皆の前でそれを稼動させれば瞬時に証明できる。

363名無しさん:2014/12/25(木) 18:10:27
いよいよ結論が出るんだね。
明日の10時から13時と言ってるね。

364名無しさん:2014/12/25(木) 18:11:51
相沢の話の流れだと3月頃に全部一緒になりそうかなと思ってたら
意外に早かったね。

365名無しさん:2014/12/25(木) 18:13:41
情報によると15日に小保方さんに資料の調査結果を見せたら
その日に退職願いをもってきたというね。

366名無しさん:2014/12/25(木) 18:15:06
今確認すると15日に別件だけど理研内で不正防止に関する最新の
会合が開かれてるね。

367名無しさん:2014/12/25(木) 18:20:06
その日かどうかは分からないね。あの退職願は本人でなく三木が書いてるから
事前に準備されてたと思うよ。資料を見せられてもノーコメントを通すように
アドバイスされているでしょうよ。細胞が出来なかった時点で出すことは
決めてたはずよ。

368名無しさん:2014/12/25(木) 18:22:59
あの退職願いは専門家らしく全てに用心深く書かれているよね。
具体的なことは何にも書かれてないね。まあ、お世話になりましたという
程度の内容よね。今後の裁判沙汰に不利にならないようにしてる。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板