[
板情報
|
カテゴリランキング
]
したらばTOP
■掲示板に戻る■
全部
1-100
最新50
|
メール
|
1-
101-
201-
301-
この機能を使うにはJavaScriptを有効にしてください
|
雑談スレッド
318
:
S~(社会人)
:2007/03/14(水) 19:03:46 ID:/2qB4bGY
無知なるを敢えてのトライアルです。是非、御一読くださいますよう。
( 試論 ) ∞ の導入について
先ず、 1∈R という或る大きさを考える。これを等分していって、その 1 つが十分
に小さい或る 0″(≒0∈R) という大きさになったとき、その等分分母を ∞' とする。
すなわち、 xy 座標平面上の関数 y=f(x)=1/x について 0″=f(∞')=1/∞' から
∞'=1/0″ で ∞'→∞(0″→0) である。
いま、 R″={r'|r'=r*0″, r∈R} とおいたとき、 1/0″=r[1]'(r[1]'∈R″) とすると、
∞←1/0″=r[1]*0″(r[1]∈R)→0 (0″→0)
これは矛盾である。したがって、 1/0″=∞'not∈R″
ここで、 R'=R″+{∞'} とおく。
このとき、 r*0″≧∞' とすると、
0←r*0″≧1/0″→∞ (0″→0)
これは矛盾である。
したがって、 r*0″<∞' であるから、 ∞' は R' で最大数となる。
如かして、 R″ は R と濃度が等しくかつ元の並び方も同様の順序で
あるから、 ∃r[2]>∀r∈R のとき r[2]=∞ と定義すれば、 ∞'=∞ である。
他方、 R' を体とすると、 2*∞'=∞'+∞'not∈R″ であるから 2*∞'=∞'
したがって、 ∞'+∞'=∞' から ∞'+∞'+(-∞')=∞'+(-∞') で ∞'=0'
これは矛盾である。
よって、 R' は体ではなく順序を表すだけの数の集合である。
ただし、 R″ は R と同様であるから体である。
( 終 )
※ 上について、何か comment を頂ければ幸甚です。
新着レスの表示
名前:
E-mail
(省略可)
:
※書き込む際の注意事項は
こちら
※画像アップローダーは
こちら
(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)
スマートフォン版
掲示板管理者へ連絡
無料レンタル掲示板