[
板情報
|
カテゴリランキング
]
したらばTOP
■掲示板に戻る■
全部
1-100
最新50
| |
こらむ
10
:
白書さん
:2010/05/09(日) 18:06:51 HOST:e0109-119-107-230-50.uqwimax.jp
DSGEモデルとVARモデルの計量分析―MCMCのマクロ金融政策への応用(渡部敏明(一橋大学)・藤原一平(日本銀行金融研究所))金融政策の効果の分析に用いられるモデルに多変量自己回帰(Vector Autoregressive; VAR)モデルと確率的動学一般均衡(Dynamic Stochastic General Equilibrium; DSGE)モデルがある。DSGE モデルは消費者や企業の効用や利潤の動学的最適化を基礎とするモデルで、ノーベル経済学賞を受賞したKydland-Prescott の新古典派的なリアル・ビジネス・サイクル・モデルに端を発するが、その後、現実のマクロデータの変動によりフィットするように、価格・賃金の硬直性、消費に関する習慣形成、投資の調整コストなどの市場の摩擦を導入したニュー・ケインジアン・モデルへと発展している。DSGE モデルは経済理論に基づくので、 経済理論に基づかないVAR モデルと比べてショックの識別がしやすいというメリットがある。DSGE モデルを用いて金融政策の効果を分析する場合、古くは、パラメータに適当な値を与えていたが、近年では、マルコフ連鎖モンテカルロ法(Markov chain Monte Carlo; MCMC)を用いてベイズ推定することでパラメータと金融政策の効果を同時推定するようになってきた。
VAR モデルとDSGE モデルを両方用いる分析手法もある。これは、DSGE-VAR モデルと呼ばれ、 具体的には、マクロデータのサンプル数をTとすると、DSGE モデルから発生させたλT個のデータを用いてVAR モデルのパラメータの事前分布を設定する。λの値を大きくすると、DSGE モデルからの情報をより多く使うことになるので、パラメータλの値を変えてモデルの当てはまりの良さを比較することにより、DSGE モデルの情報がVAR モデルの推定にどの程度有用であるかを判断できる。
本講義では、 こうしたDSGE モデルやDSGE-VAR モデルについて解説を行うとともに、これらのモデルの分析に必要なベイズ推定、MCMC、事後オッズ比に基づくモデル選択などの計量手法についても解説を行う。また、日本のマクロデータへの応用例についても紹介する。
新着レスの表示
名前:
E-mail
(省略可)
:
※書き込む際の注意事項は
こちら
※画像アップローダーは
こちら
(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)
スマートフォン版
掲示板管理者へ連絡
無料レンタル掲示板