したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |

『解析概論』輪読

13RSKTTM:2005/07/31(日) 13:35:27
定義(数列の極限)

(∀ε>0)((∃n_0∈N)(n>n_0⇒|a_n-α|<ε))
が成り立つとき{a_n}はαに収束するという。
(Nは自然数全体の集合)

数列{a_n}が収束するときその極限αは一意的に確定します。

命題

数列{a_n}が収束するならば、それは唯一つの極限を持つ。

証明

数列{a_n}がαに収束し、かつβに収束するとする(α<βと仮定する)。つまり極限の定義より、
(∀ε>0)((∃n_0∈N)(n>n_0⇒|a_n-α|<ε)),
(∀ε>0)((∃n_0∈N)(n>n_0⇒|a_n-β|<ε))
が成り立つとする。
これはどんな正数εが与えられてもうまく自然数n_1, n_2をとれば
n>n´=max{n_1, n_2}のとき|a_n-α|<εかつ|a_n-β|<εということである。
すると特にε<(β-α)/2としてもこれは成り立つ((β-α)/2>0に注意)。
このとき|a_n-α|<ε⇔α-ε<a_n<α+εなどに注意すれば、
β-ε<a_n<α+εとなるがこれは
ε>(β-α)/2を意味し、矛盾する。
β>αと仮定しても同様の矛盾が起こるからα=β.


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板