したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |

◆ わからない問題はここに書いてね ◆

108名無し研究員さん:2004/03/13(土) 11:32
えーと、空気読んでないようで悪いですけど
>すべてのxで|f'(x)|≦|f(x)|, f(0)=0を満たしているような微分可能な関数f(x)を求めよ
この問題を解いていて疑問に思った事が二つあります。
一階微分可能な関数fの導関数はfにおいて微分可能な点で連続かどうか?
連続関数fがあるとして
集合AをA={x|f(x)=0}で定めるとAは閉集合かどうか?
だれか考えてみてください。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板