したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |

とはずがたり数理解析研究所講究録

39とはずがたり:2018/11/03(土) 10:50:02

!?┐('〜`;)┌

解析接続
https://ja.wikipedia.org/wiki/%E8%A7%A3%E6%9E%90%E6%8E%A5%E7%B6%9A

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。(2015年7月)
解析学において、解析接続 (かいせきせつぞく、英: analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。

定義
ここでは、有理型関数の解析接続を定義する。正則関数に限って定義することもあるが、有理型関数は、分母分子ともに正則関数である分数で表されるような関数なので、有理型関数の解析接続の定義は、正則関数の解析接続の定義も含んでいる。正則関数で定義する場合はローラン級数の代わりに、 テイラー級数を用いる。

関数要素
リーマン球面 C の領域 D において定義された有理型関数 f(z) は任意の w ∈ D においてローラン展開が可能であり k を整数として

{\displaystyle f_{w}(z)=\sum _{n=k}^{\infty }a_{n}(z-w)^{n}} f_w(z) = \sum_{n=k}^{\infty} a_n (z-w)^{n}
という級数と同一視できる。


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板