157: セント・パンテレイモン・ふふふ三世 :2014/12/01(月) 10:27:23
(ii)一次細胞が使用されるべきである。我々は新鮮なマウス胚線維芽細胞(MEF)なら可能であるが、体外で増殖されたMEFを再プログラムすることは困難であることをすでに知っている。
(iii) 報告されている実験のために、我々は、理化学研究所バイオリソースセンターによってGOF18-GFP株11トランスジェニックマウス(B6;B6D2-Tg(GOF18/EGFP)11/Rbrc)として維持されている、Oct-3/4-EGFPトランスジェニックマウス株を使っている(Ohbo et al, Dev Biol, 2003; Yoshimizu et al, Dev Growth Differ, 1999)。導入遺伝子のホモ接合体は、強化された信号を得るため、ライブイメージング用に使用されている。
(iv)1週間以上経過したマウス由来の細胞は現在のプロトコルの下では非常に貧弱な再プログラミング効率を示した。雄の動物からの細胞は雌からのものよりも高い効率を示している。
176: セント・パンテレイモン・ふふふ三世 :2014/12/02(火) 07:27:47
<参照>
Obokata, H. et al.Obokata. 『体細胞の多能性への刺激惹起性運命変換』Nature, 505, 641-647 (2014a)
Obokata, H. et al. 『取得多能性を持つ再プログラム細胞における双方向への発生能力』 676–680 (2014b)
Ohbo, K. et al. 『マウスの小さな星の中に満たされた思春期前の精子形成における幹細胞の同定と特徴づけ』 Dev. Biol. 258, 209–225 (2003)
177: セント・パンテレイモン・ふふふ三世 :2014/12/02(火) 07:28:21
Yoshimizu, T. et al. 『マウスのOct4/緑色蛍光タンパク質(GFP)導入遺伝子の生殖細胞特異的発現』 Dev. Growth. Differ. 6, 675-684 (1999)
Ogawa, K., Matsui, H., Ohtsuka, S. & Niwa, H. 『マウスES細胞のクローン増殖を調節するための新しいメカニズム』 Genes Cells 9, 471–477 (2004)
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. 『FGF4<線維芽細胞増殖因子>によるTS細胞増殖の推進』 Science 282, 2072–2075 (1998)