SRAデータベースsra-形式ファイルはsratoolkit.2.3.4-2を使ってfastq形式に変換されている。 配列アライメントのためにBowtie2(バージョン2.1.0、エイチティーティーピー略bowtie-bio.sourceforge.net/bowtie2/index.shtml)とtophat2(エイチティーティーピー略tophat.cbcb.umd.edu)プログラムが適用されている。この研究はメッセンジャーRNAの構造を考慮していなかったので、すべての配列は、50 bpの読み取り断片に断片化され、2つのミスマッチを許容する “–no-coverage-search -G genes.gtf”パラメータを指定してトップハットまたはtophat2を使用して整列させた。トップハットプログラムは SOLiD colored space fastq filesを分析するためだけに使用された。遺伝子発現のレベルは、(バージョン2.1.1)のcufflinksを用いて算出されたfragments per kilobase of exon per million reads (FPKM) 値で評価されている。 C ++で書かれたプログラムはBAMファイルの中のSNP対立遺伝子を検出、列挙するために開発されています。プログラムは、公開リポジトリ(エイチティーティーピー略github.com/takaho/snpexp/)で入手可能なオープンソースソフトウェアです。百万カフスを値を読み込むごと
Ben-David, U., Mayshar, Y. & Benvenisty, N. (2013) 『世界的遺伝子発現プロファイルに基づく多能性幹細胞の仮想核型分類』 Nat. Protoc. 8, 989–997
CrossRef
CAS
Web of Science® Times Cited: 3
106: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:02:03
DeVeale, B., van der Kooy, D. & Babak, T. (2012) 『RNA-配列によるインプリント遺伝子発現の重要な評価:新たな視点』PLoS Genet. 8, e1002600
CrossRef
CAS
Web of Science® Times Cited: 70
107: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:02:38
Gropp, A. (1982) 『トリソミーのための動物モデル』 Virchows Arch. A Pathol. Anat. Histol. 395, 117–131
CrossRef
PubMed,
CAS
Web of Science® Times Cited: 60
108: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:03:12
Hussein, S.M., Batada, N.N., Vuoristo, S. et al. (2011) 『多能性再プログラミング中のコピー数の変化と選択』 Nature 471, 58–62
CrossRef
CAS
Web of Science® Times Cited: 360,
ADS
110: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:04:14
Lagarrigue, S., Martin, L., Hormozdiari, F., Roux, P.F., Pan, C., van Nas, A., Demeure, O., Cantor, R., Ghazalpour, A., Eskin, E. & Lusis, A.J. (2013) 『RNA-配列によるマウス肝臓における対立遺伝子特異的発現の分析:遺伝子連鎖を使って同定されたcis-eQTLとの比較』 Genetics 195, 1157–1166
CrossRef
CAS
Web of Science® Times Cited: 4
115: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:07:12
Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. (1998) 『FGF4による栄養膜幹細胞増殖の促進』 Science 282, 2072–2075
CrossRef,
PubMed,
CAS,
Web of Science® Times Cited: 602,
ADS
116: セント・パンテレイモン・ふふふ三世 :2014/11/28(金) 16:07:45
Wang, L., Wang, S. & Li, W. (2012) 『RSeQC:RNA-seq実験の品質管理』 Bioinformatics 28, 2184–2185
CrossRef,
CAS,
Web of Science® Times Cited: 27
157: セント・パンテレイモン・ふふふ三世 :2014/12/01(月) 10:27:23
(ii)一次細胞が使用されるべきである。我々は新鮮なマウス胚線維芽細胞(MEF)なら可能であるが、体外で増殖されたMEFを再プログラムすることは困難であることをすでに知っている。
(iii) 報告されている実験のために、我々は、理化学研究所バイオリソースセンターによってGOF18-GFP株11トランスジェニックマウス(B6;B6D2-Tg(GOF18/EGFP)11/Rbrc)として維持されている、Oct-3/4-EGFPトランスジェニックマウス株を使っている(Ohbo et al, Dev Biol, 2003; Yoshimizu et al, Dev Growth Differ, 1999)。導入遺伝子のホモ接合体は、強化された信号を得るため、ライブイメージング用に使用されている。
(iv)1週間以上経過したマウス由来の細胞は現在のプロトコルの下では非常に貧弱な再プログラミング効率を示した。雄の動物からの細胞は雌からのものよりも高い効率を示している。
176: セント・パンテレイモン・ふふふ三世 :2014/12/02(火) 07:27:47
<参照>
Obokata, H. et al.Obokata. 『体細胞の多能性への刺激惹起性運命変換』Nature, 505, 641-647 (2014a)
Obokata, H. et al. 『取得多能性を持つ再プログラム細胞における双方向への発生能力』 676–680 (2014b)
Ohbo, K. et al. 『マウスの小さな星の中に満たされた思春期前の精子形成における幹細胞の同定と特徴づけ』 Dev. Biol. 258, 209–225 (2003)
177: セント・パンテレイモン・ふふふ三世 :2014/12/02(火) 07:28:21
Yoshimizu, T. et al. 『マウスのOct4/緑色蛍光タンパク質(GFP)導入遺伝子の生殖細胞特異的発現』 Dev. Growth. Differ. 6, 675-684 (1999)
Ogawa, K., Matsui, H., Ohtsuka, S. & Niwa, H. 『マウスES細胞のクローン増殖を調節するための新しいメカニズム』 Genes Cells 9, 471–477 (2004)
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. 『FGF4<線維芽細胞増殖因子>によるTS細胞増殖の推進』 Science 282, 2072–2075 (1998)