レス数が1スレッドの最大レス数(1000件)を超えています。残念ながら投稿することができません。
「集合・位相入門」輪読会
-
定理2による論証法はW=Nのとき数学的帰納法,一般のWのとき超限帰納法といいます.
a=minWのとき★は
x<minWであるxについてP(x)が真ならP(minW)も真
になりますが,これは
(Wの元xがx<minWをみたす⇒P(x)が真)⇒P(minW)が真
即ち
¬(Wの元xがx<minWをみたす⇒P(x)が真)∨P(minW)が真
となり
¬(Wの元xがx<minWをみたす⇒P(x)が真)
が矛盾式であるので結局
P(minW)が真
のみを仮定することと同じです.
実際に超限帰納法を用いて証明するときは
1.P(minW)が真
2.minWでない任意のWの元aについて,x<aなるWの元xに対してP(x)が真ならP(a)も真
の2つを示すことになります.
掲示板管理者へ連絡
無料レンタル掲示板