したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |
レス数が1スレッドの最大レス数(1000件)を超えています。残念ながら投稿することができません。

「集合・位相入門」輪読会

908Мечислав(☆9) </b><font color=#FF0000>(DTxrDxh6)</font><b>:2005/02/18(金) 23:27:50
B)切片と超限帰納法
Wを整列集合,aをその元とします.このとき{x|x∈W,x<a}をWのaによる切片といい
W<a>と書きます.
W<a>=Φ⇔a=minWです.実際演習スレ>>8を使えばW<a>=Φ⇔W-W<a>=W⇔{x|x∈W,x≧a}=W⇔a=minW.
また>>905でLAR-menさんが述べてくれたように
a*がaの直前の元⇔a*=maxW<a>.
です.
aが直前の元をもたないとすると,任意のW<a>の元xに対してx≦aですからaはW<a>の上界のひとつです.
a'がW<a>の任意の上界であるとすると,a'<aではありえません.a'<aであるならa'∈W<a>となってしまい,
a'=maxW<a>すなわちa'はaの直前の元という矛盾を起こしてしまいます.だからa≦a'.
以上より,
aが直前の元を持たないならばa=supW<a>
が成り立ちます.




掲示板管理者へ連絡 無料レンタル掲示板