したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |
レス数が1スレッドの最大レス数(1000件)を超えています。残念ながら投稿することができません。

「集合・位相入門」輪読会

887LAR-men </b><font color=#FF0000>(lBLdA0dk)</font><b>:2005/02/04(金) 16:27:48
           §2 整列集合とその比較定理

 A) 整列集合
 自然数全体の集合Nは大小の順序≦について全順序集合をなすが、さらに
この順序集合は次の定理に述べる重要な性質を有する。
 定理1 Nの任意の空でない部分集合は最小元をもつ。
 証明 この定理は数学的帰納法によって次のように証明される。
 MをNの空でない部分集合とする。M≠Φであるから、Mは少なくとも1つ
の自然数を含む。もし1∈Mならば、もちろん1=minMである。そこで、
Mがn以下のある自然数を含むような場合には、この定理が成り立つものと
して、n+1∈Mの場合にもこの定理が成り立つことを証明する。この場合、
もしMがn以下のある自然数をも含むならば、帰納法の仮定によってMは
最小元をもつ。またMがn以下のどの自然数も含まないならば、当然n+1=minM
となる。(証明終)
 一般に、Wが全順序集合で、その空でない任意の部分集合がいつも最小元
をもつとき、Wを整列集合(well-ordered set)という。Nは最も典型的な
整列集合である。また、有限の全順序集合は明らかに整列集合である。
 本節以後、順序集合を略式にその台集合と同一の記号で表し、特に必要の
ある場合のほかは、順序の記号を付記しない。




掲示板管理者へ連絡 無料レンタル掲示板