したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | メール | |
レス数が1スレッドの最大レス数(1000件)を超えています。残念ながら投稿することができません。

「集合・位相入門」輪読会

218LAR-men </b><font color=#FF0000>(lBLdA0dk)</font><b>:2004/03/07(日) 23:16
(c) (b)より、(A⊿B)^c={(A∪B)∩(A∩B)^c}^c=(A∪B)^c∪(A∩B)=(A^c∩B^c)∪(A∩B)を使うと、
  左辺=(A⊿B)⊿C={(A⊿B)∩C^c}∪{(A⊿B)^c∩C}=<{(A∩B^c)∪(A^c∩B)}∩C^c>∪<{(A^c∩B^c)∪(A∩B)}∩C>
    =(A∩B^c∩C^c)∪(A^c∩B∩C^c)∪(A^c∩B^c∩C)∪(A∩B∩C)  
  右辺=A⊿(B⊿C)={A∩(B⊿C)^c}∪{A^c∩(B⊿C)}=<{A∩{(B^c∩C^c)∪(B∩C)}>∪<A^c∩{(B∩C^c)∪(B^c∩C)}>
    =(A∩B^c∩C^c)∪(A∩B∩C)∪(A^c∩B∩C^c)∪(A^c∩B^c∩C)
  したがって、左辺=右辺。

(d) (b)と問題4の(e)を使うと、A∩(B⊿C)=A∩{(B∪C)-(B∩C)}={A∩(B∪C)}-{A∩(B∩C)}
   ={(A∩B)∪(A∩C)}-{(A∩B)∩(A∩C)}=(A∩B)⊿(A∩C)




掲示板管理者へ連絡 無料レンタル掲示板