レス数が1スレッドの最大レス数(1000件)を超えています。残念ながら投稿することができません。
「集合・位相入門」輪読会
-
xをXの元を表す変数とすれば、A^c={x|x∉ฺA} あるいは、x∈A^c⇔x∉ฺA
である。
A^cの定義から、明らかに次の諸法則が成立する。
(2.12) A∪A^c=X,A∩A^c=Φ
(2.13) A^cc=A (ただし、A^ccはAの補集合の補集合)
(2.14) Φ^c=X,X^c=Φ
(2.15) A⊂B⇔A^c⊃B^c
(2.15)だけ証明しておきます。他のは明らかだと思うので・・・
xをXの元を表す変数とする。A⊂B⇔(x∈A⇒x∈B)⇔(x∉ฺB⇒x∉ฺA)⇔
(x∈B^c⇒x∈A^c)⇔A^c⊃B^c
また、次の2つの法則は、"de Morganの法則"と呼ばれる。
(2.16) (A∪B)^c=A^c∩B^c
(2.16)' (A∩B)^c=A^c∪B^c
(2.16)の証明:xをXの任意の元とするとき、x∈(A∪B)^c⇔x∉ฺA∪B⇔(x∉ฺA)∧(x∉ฺB)
⇔(x∈A^c)∧(x∈B^c)⇔x∈A^c∩B^c より成立。
(2.16)'も同様。
掲示板管理者へ連絡
無料レンタル掲示板