[
板情報
|
カテゴリランキング
]
したらばTOP
■掲示板に戻る■
全部
1-100
最新50
| |
CS231n: Convolutional Neural Networks for Visual Recognition
72
:
karino2
:2017/05/22(月) 20:24:33
さて、コースについての印象。
今時ならバッチ正則化を自分で書く事も無いし、いちいちnumpyでスクラッチから実装するのとか、一部のマニアだけの趣味の世界だろ、と思ったが、そうでも無かった。
最後にTensorflowで標準的で結構複雑なCNNのモデルを作るのだが、当たり前の事だけど一発で動かない。
ドキュメントの出来も悪くて、結構中を理解してないとどう使ったらいいか分からないAPIも多い。
この時に、全部の実装を自分でnumpyで書いてあると、それを見ながらデバッグ出来て良い。
実際バッチ正則化の周辺は何度も自分のコードと見比べてデバッグしていった。
Tensorflowは、ブラックボックスとしてただ他で書いてあるのを適用すると、ちょっと動かなかった時にかなりお手上げな状況になってしまう気がする。
トレーニング周辺のコードがごついので、モデルの所をデバッグするのが相当難しい。
だから結局簡単なケースをnumpyで実装して比較するのは、当初思っていたほど無駄な作業でも無かった。
必須かどうかまでは分からないが、自分くらいのレベルのプログラマならやっておいた方が良さそう。
という事でとても勉強になった。
また、最初は少ないデータでオーバーフィットを試す、とか、選択肢がいっぱいあるなかで実務的にはこれ、みたいな現時点での結論を断言してくれる所とか、実際に作業する時にはとても参考になる事がたくさんあった。
コードの構成も手慣れているというか、なるほど、こうすればモデルの所とか簡単に差し替えられるように作れるのね、みたいな事はいろいろ参考になった。
全体としては、凄く難しいコースだったが、それだけの物はあった。
大分現代的なCNNを自分で自由に作れるようにはなる。
ちょっと難易度を落としたいならbatch normalization、spatial batch normalization、そしてTensorflowのcomplex_modelの所は飛ばして、ここだけ他の方法で学ぶと良いかもしれない(が他の方法は自分は知らない)
新着レスの表示
名前:
E-mail
(省略可)
:
※書き込む際の注意事項は
こちら
※画像アップローダーは
こちら
(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)
スマートフォン版
掲示板管理者へ連絡
無料レンタル掲示板