[
板情報
|
カテゴリランキング
]
したらばTOP
■掲示板に戻る■
全部
1-100
最新50
|
メール
|
1-
101-
201-
301-
この機能を使うにはJavaScriptを有効にしてください
|
東大の授業で奮闘するスレ
330
:
臺地
◆6rqpPuO9q2
:2007/03/13(火) 23:31:37
外測度
区間I(端点はa<b)に対し、その長さ|I|:=b-aで定義。
Def2.1
A⊂Rに対し、Aを覆う加算個の開区間の、長さの総和の下限をm*(A)と書きルベーグ外測度という。
つまり、P_A={(In)_n∈N|Inは開区間でA⊂∪[n=1,∞]In}、Q_A={Σ[n=1,∞]|In||(In)∈P_A}(+∞も許可)
とおいたとき、m*(A)=inf_[(In)∈P_A]Q_Aである。
Th'm2.2.3)劣加法性
A1,・・・⊂Rに対し、m*(∪[j=1,∞]Aj)≦Σ[j=1,∞]m*(Aj)
証明の方針
∪[j=1,∞]Ajを覆う区間列で、その長さの総和がΣ[j=1,∞]m*(Aj)くらいになる奴を作れればおk。
各jに対し、Aj⊂∪[n=1,∞]Injとなる区間Injたちをとってくる。ただしΣ[n=1,∞]|Inj|≦m*(Aj)+(小)となるようにする。
すると∪Aj⊂∪[n,j≧1]Injであって、m*(∪[j=1,∞]Aj)≦Σ[n,j≧1]|Inj|≦Σ[j=1,∞]m*(Aj)+Σ[j=1,∞](小)となる。
余計なΣ(小)の項は、m*(∪[j=1,∞]Aj)やΣ[j=1,∞]m*(Aj)とは独立に、いくらでも小さくできるようにしなくてはいけない。
任意のε>0をとり、Σ[j=1,∞](小)=εとなるようにするには・・・(小)=ε/2^jとしておけばいい。
新着レスの表示
名前:
E-mail
(省略可)
:
※書き込む際の注意事項は
こちら
※画像アップローダーは
こちら
(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)
スマートフォン版
掲示板管理者へ連絡
無料レンタル掲示板