[
板情報
|
カテゴリランキング
]
したらばTOP
■掲示板に戻る■
全部
1-100
最新50
|
メール
|
1-
101-
201-
301-
401-
この機能を使うにはJavaScriptを有効にしてください
|
「東大」「数学」「補完」
232
:
たま
◆U4RT2HgTis
:2006/04/15(土) 11:36:35
>>231
1000=999+1
1000=998+2
・・・
1000=991+9
1000=990+10 ここ注目
1000=989+11
・・・
1000=901+99
1000=900+100 ここはもっと注目
1000=899+101
ってことで
233
:
たま
◆U4RT2HgTis
:2006/04/15(土) 11:37:38
l=��[k=0,n-1]a_k・p^k
p^n=��[k=0,n-1](p-1)・p^k+1を考慮して
p^n-l=Σ[k=0,n-1](p-1-a_k)・p^k+1
ここで、
A_0={l|a_0>0}
A_1={l|a_0=0,a_1>0}
・・・
A_r={l|a_i=0(i<r),a_r>0}
・・・
A_(n-1)={l|a_i=0(i<n-1),a_(n-1)>0}
とおくと、
∪[r=0,n-1]A_r={l|1≦l≦p^n−1}
l∈A_0とするとp-1-a_0<p-1よりのとき
p^n-l=(p-1-a_0+1)+Σ[k=1,n-1](p-1-a_k)・p^k
なので、
S(p^n-l)=(p-1-a_0+1)+Σ[k=1,n-1](p-1-a_k)
よって
S(l)+S(p^n-l)
=Σ[k=0,n-1]a_k+(p-1-a_0+1)+Σ[k=1,n-1](p-1-a_k)
=p+Σ[k=1,n-1](p-1)
=n(p-1)+1
同様にして、l∈A_rのとき
p-1-a_i=p-1(i<r)
p-1-a_k<p-1
なので
p^n-l=Σ[k=r,n-1](p-1-a_k)・p^k+Σ[k=0,r-1](p-1)・p^k+1
=Σ[k=r,n-1](p-1-a_k)・p^k+p^r
=(p-1-a_r+1)*p^r+Σ[k=r+1,n-1](p-1-a_k)・p^k
よって
S(l)+S(p^n-l)
=Σ[k=r,n-1]a_k+(p-1-a_r+1)+Σ[k=r+1,n-1](p-1-a_k)
=p+Σ[k=r+1,n-1](p-1)
=(n-r)(p-1)+1
よって、l∈A_(n-1)のときS(l)+S(p^n−l)は最小になり最小値p
234
:
たま
◆U4RT2HgTis
:2006/04/15(土) 11:41:12
こんな感じで書いたらいいと思うけど、いかにも大学生的な答案になってしまった。
受験の答案としてはどう書いたらいいのか微妙なところ。
235
:
Je n'ai pas de nom!
:2006/04/15(土) 12:31:44
あ!そうか。
236
:
◆ZFABCDEYl.
:2006/04/15(土) 15:51:37
>>234
㌧です。この問題を記述式答案化できるようにするには
かなりの技術が必要だなと感じました。さすがたま氏・・。
237
:
Je n'ai pas de nom!
:2006/04/17(月) 21:56:29
3つの変曲点をもち、任意の直線と共有点をもつような連続かつ微分可能なグラフy=f(x)は、
最低、何本の共通接線が引けるか?
238
:
Je n'ai pas de nom!
:2009/11/22(日) 15:20:27
偶数の完全数の「一の位」は?(さくら教研の宿題)
239
:
ラメ
:2009/11/22(日) 21:13:05
未解決問題
新着レスの表示
名前:
E-mail
(省略可)
:
※書き込む際の注意事項は
こちら
※画像アップローダーは
こちら
(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)
スマートフォン版
掲示板管理者へ連絡
無料レンタル掲示板