したらばTOP ■掲示板に戻る■ 全部 1-100 最新50 | |

喪女が喪女のLINE友達を作るスレ

141彼氏いない歴774年:2016/04/13(水) 09:59:39
The main The main purposes of this paper are (i) to illustrate explicitly by a number of examples the gauge functions chi(x, t) whose spatial and temporal derivatives transform one set of electromagnetic potentials into another equivalent set; and (ii) to show that, whatever propagation or non-propagation characteristics are exhibited by the potentials in a particular gauge, the electric and magnetic fields are always the same and display the experimentally verified properties of causality and propagation at the speed of light. The example of the transformation from the Lorenz gauge (retarded solutions for both scalar and vector potential) to the Coulomb gauge (instantaneous, action-at-a-distance, scalar potential) is treated in detail. A transparent expression is obtained for the vector potential in the Coulomb gauge, with a finite nonlocality in time replacing the expected spatial nonlocality of the transverse current. A class of gauges (v-gauge) is described in which the scalar potential propagates at an arbitrary speed v relative to the speed of light. The Lorenz and Coulomb gauges are special cases of the v-gauge. The last examples of gauges and explicit gauge transformation functions are the Hamiltonian or temporal gauge, the nonrelativistic Poincare or multipolar gauge, and the relativistic Fock-Schwinger gauge.purposes of this paper are (i) to illustrate explicitly by a number of examples the gauge functions chi(x, t) whose spatial and temporal derivatives transform one set of electromagnetic potentials into another equivalent set; and (ii) to show that, whatever propagation or non-propagation characteristics are exhibited by the potentials in a particular gauge, the electric and magnetic fields are always the same and display the experimentally verified properties of causality and propagation at the speed of light. The example of the transformation from the Lorenz gauge (retarded solutions for both scalar and vector potential) to the Coulomb gauge (instantaneous, action-at-a-distance, scalar potential) is treated in detail. A transparent expression is obtained for the vector potential in the Coulomb gauge, with a finite nonlocality in time replacing the expected spatial nonlocality of the transverse current. A class of gauges (v-gauge) is described in which the scalar potential propagates at an arbitrary speed v relative to the speed of light. The Lorenz and Coulomb gauges are special cases of the v-gauge. The last examples of gauges and explicit gauge transformation functions are the Hamiltonian or temporal gauge, the nonrelativistic Poincare or multipolar gauge, and the relativistic Fock-Schwinger gauge.うんち


新着レスの表示


名前: E-mail(省略可)

※書き込む際の注意事項はこちら

※画像アップローダーはこちら

(画像を表示できるのは「画像リンクのサムネイル表示」がオンの掲示板に限ります)

掲示板管理者へ連絡 無料レンタル掲示板